Breast cancer remains a significant global health challenge, with high incidence and mortality rates. While mammography has contributed to declining mortality, its limitations in sensitivity and specificity for early detection, particularly in distinguishing between pure atypical ductal hyperplasia (ADH), ductal carcinoma in situ (DCIS), and invasive ductal carcinoma (IDC), highlight the need for more precise tools. Even with core needle biopsy (CNB), conclusive diagnoses often require surgical excision. This underscores the urgency for non-invasive biomarkers to improve early detection and differentiation, potentially reducing invasive procedures. Recent research has shifted focus from mRNA to microRNAs (miRNAs) as promising biomarkers for breast cancer screening. These small non-coding RNAs, which exhibit abnormal expression patterns in breast cancer patients’ tissue and serum/plasma, play crucial roles in early breast cancer development by modulating proto-oncogenes or tumor suppressor genes at the post-transcriptional level. Notably, miRNAs such as miR-21, miR-155, and miR-200c are key regulators of cell proliferation and apoptosis, with the potential to distinguish between normal tissue and various stages of breast lesions, including ADH, DCIS, and IDC. Additionally, miRNAs in serum and plasma offer a non-invasive method to differentiate breast cancer stages. This review aims to consolidate current knowledge on early breast lesions and explore the potential of miRNAs as biomarkers for early breast cancer detection, which could enhance risk prediction and reduce reliance on invasive diagnostic procedures.