2023, Volume 16, Issue 7, pp 1007 – 1012

Biocompatibility and histological responses of eggshell membrane for dental implant-guided bone regeneration

SCImago Journal & Country Rank

Issues

Special Issues

Authors and Affiliations

Corresponding Author: Florin Onisor Maxillofacial Surgery and Implantology, Faculty of Medicine, Iuliu Hatieganu University of Pharmacy and Medicine, Cluj-Napoca, Romania Email: florin.onisor@umfcluj.ro

Abstract

Guided bone regeneration (GBR) utilizing eggshell membrane (ESM) as a potential biomaterial for dental implant therapy augmentation was explored in this study. ESM, an environmentally friendly waste product, possesses collagen-rich characteristics. The biocompatibility and histological responses of ESM were investigated in a rat model. Twelve young adult Wistar rats were used in this study. ESM samples were implanted in subcutaneous and intramuscular pockets, and samples were collected at 48 hours, 4 weeks, and 8 weeks post-implantation. Histological analysis revealed the changes in ESM over time. Results showed that ESM maintained its structural integrity, induced a moderate cellular response, and exhibited slow degradation, indicating potential biocompatibility. However, the lack of organized collagen arrangement in ESM led to the formation of irregular and polymorphic spaces, allowing cell migration. Encapsulation of ESM by newly proliferating collagen fibers and multinucleated giant cells was observed at later time points, indicating a foreign body reaction. Crosslinking might improve its performance as a separation membrane, as it has the potential to resist enzymatic degradation and enhance biomechanical properties. In conclusion, ESM demonstrated biocompatibility, slow degradation, and lack of foreign body reaction. While not suitable as a complete separation membrane due to irregular collagen arrangement, further research involving crosslinking could enhance its properties, making it a viable option for guided bone regeneration applications in dental implant therapy. This study highlights the potential of repurposing waste materials for medical purposes and underscores the importance of controlled collagen structure in biomaterial development.

Keywords

About this article

PMC ID: 10600669
PubMed ID: 
DOI: 10.25122/jml-2023-0267

Article Publishing Date (print): 7 2023
Available Online: 

Journal information

ISSN Printing: 1844-122X
ISSN Online: 1844-3117
Journal Title: Journal of Medicine and Life

Copyright License: Open Access

This article is distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use and redistribution provided that the original author and source are credited.


SCImago Journal & Country Rank

Issues

Special Issues