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ABSTRACT
This study presents an improved method for obtaining spheroids microwell arrays for histological processing and 
analysis, focusing on glioblastoma (U87 MG) and breast adenocarcinoma (MCF-7) tumor models. By transitioning 
from traditional 2D cell cultures to 3D systems, this approach overcomes the limitations of  2D cultures by more 
accurately replicating the tumor microenvironment. The method consists of  producing homotypic and heterotypic 
spheroids using low-adherence agarose-coated wells, embedding these spheroids in agarose microwell arrays, and 
conducting immunohistochemistry (IHC) to analyze cellular and molecular profiles. Morphological analyses were 
performed using OrganoSeg software, and IHC staining confirmed marker expressions consistent with respective tu-
mor types. The study details the workflow from 2D cell culture to IHC analysis, including agarose well coating, spher-
oid embedding, and IHC staining for markers such as EMA, p53, Ki-67, ER, PR, and HER2. Results demonstrated 
compact, round U87 MG spheroids and fibroblast-stabilized MCF-7 spheroids, with both types exhibiting specific 
marker expressions. This innovative approach significantly enhances the efficiency of  producing and analyzing large 
volumes of  spheroids, making it both quick and cost-effective. It offers a robust drug screening and cancer research 
platform, maintaining spheroid traceability even in bulk workflow conditions. Furthermore, this methodology sup-
ports advances in personalized medicine by providing a more physiologically relevant model than 2D cultures, which 
is crucial for investigating tumor behavior and therapeutic responses through IHC. 
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INTRODUCTION

The evolution of  cell culture techniques from two-dimensional 
(2D) to three-dimensional (3D) models represents a paradigm 
shift in cancer research, profoundly impacting our capabilities to 
understand the disease and to develop new therapies. While 2D 
cultures have played an important role in the initial exploration of  
cellular behavior and drug testing, their limitations in accurately 
simulating the complex architecture and microenvironment of  
tumors have led to the adoption of  3D culture systems [1].

It is considered that in 2D culture systems, the planar growth 
leads to artificial cytoskeletal polarization, causing diminished 

cell-to-cell and cell-to-matrix interactions, leading to altered cell 
morphology, proliferation rates, and gene expression profiles 
[2]. They also fail to properly form microenvironmental niches, 
which is vital for portraying tumoral heterogeneity observed in 
vivo [3]. Hence, results from 2D cultures often do not translate 
well to clinical settings, prompting the search for more represen-
tative models.

The introduction of  3D cell culture techniques marked a sig-
nificant advance, offering models that better mimic the physical 
and biochemical cues of  the tumor microenvironment [4]. 3D 
cultures allow cells to grow in all directions, forming structures 
that exhibit cellular heterogeneity and complex cell-to-cell and 
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cell-to-matrix interactions while exposed to nutrient and oxygen 
gradients. These conditions lead to a more physiologically rele-
vant behavior, including more accurate responses to therapeutic 
agents [5,6]. The main categories of  3D systems used in oncolog-
ical research are represented in Figure 1.

Patient-derived explants and tumor-on-a-chip systems repre-
sent more advanced categories of  3D tumor models due to their 
added complexity, though their application is limited by the tech-
nical challenges associated with their production. Patient-derived 
explants involve culturing fresh tumor tissues extracted directly 
from patients, preserving various cell types and the original tu-
mor micro-architecture. This method maintains critical features 
of  the tumor microenvironment, such as cell-to-cell communica-
tion, tumor-stroma interactions, and heterogeneity, providing a 
valuable tool for personalized medicine approaches [7]. The tu-
mor-on-a-chip engineering integrates microfluidics with 3D cell 
culture and provides appropriate models for vasculature interfac-
es and tissue dynamics. Tumors-on-a-chip can also explore tu-
mor growth, metastasis, and the interaction between tissue types. 
They also allow for the precise control of  microenvironmental 
conditions, such as nutrient flow and mechanical forces, offering 
insights into how these factors influence cancer progression and 
response to treatment [8].

The spheroidal approach of  3D culture represents the most 
widely applied method of  culturing and includes techniques that 

differ in terms of  tumor cell source, cell handling, culture surface, 
and time required to form a 3D structure (Figure 1).

The techniques for spheroid formation may be classified into 
three main categories: scaffold-based, scaffold-free, and 3D bi-
oprinting (Figure 2). The scaffold-based techniques include 
seeding cells into or onto three-dimensional acellular scaffolds 
made of  various biocompatible materials that mimic specific 
tissue architecture. The scaffolds can be produced from either 
non-biodegradable material (agarose, alginate, ceramics, polysty-
rene, etc.) [9] or biodegradable materials (collagen, polyglycolic 
acid, polylactic acid, gelatin, etc.) [10]. Generation and tailor-
ing of  scaffolds use various processes, including electrospinning, 
cryogenic electrospinning, gas foaming, and solvent casting with 
particulate leaching [11]. In scaffold-free techniques, key meth-
ods promoting spheroid formation include hanging drop, coating 
surfaces with agarose or hydrogel, using low adherence plates, 
employing magnetic levitation, rotating wall vessel bioreactors, 
and integrating microfluidic devices [2,12]. Both scaffold-based 
and scaffold-free approaches encounter challenges in achieving 
native-like cell density, vascularity, and the capability for tissue 
remodeling.

3D bioprinting is a convergence of  spheroid production and 
bioprinting and enables the precise deposition of  spheroids into 
hydrogels to construct tissue-like structures [13,14]. This tech-
nique allows for the creation of  complex, multicellular tumor 

Figure 1. Main categories of 3D culture models

Figure 2. Main techniques used for spheroids formation



JOURNAL of MEDICINE and LIFE

603JOURNAL of  MEDICINE and LIFE. VOL: 17 ISSUE: 6 JUNE 2024

© 2024 by the authors. This article is an open access article distributed under the terms and conditions of  the Creative Commons Attribution (CC BY 4.0) license.

ATCC) enriched with 10 μg/mL human insulin (Novorapid Flex 
Pen, 100 IU/mL, Novo Nordisk) and 10% fetal bovine serum 
(F7524, Sigma-Aldrich), adapted after one study [19]. For U87 
MG, the following culture medium was used: EMEM (Eagle’s 
Minimum Essential Medium, 30-2003, ATCC) enriched with 
10% fetal bovine serum.

Agarose well coating 

A 1% sterile agarose solution (A9539, Sigma) was prepared by 
dissolving 0.25 g of  agarose in 25 mL of  double-distilled water 
and heating it to 100°C for 1 minute. Low-adherent 96-well 
round bottom plates (650160, Cellstar) were then coated with this 
solution, which was maintained above its melting point. For each 
well, 150 µL of  the agarose solution was dispensed and evenly 
distributed to form a thin, low-adherent agarose film on the bot-
tom of  the wells. The plates were then sealed with parafilm and 
stored at 4°C.

3D cell culturing 

For 3D culturing, cells from 2D cultures were harvested using 
Trypsin-EDTA (T4174, Sigma) and then counted using a BioRad 
TD10. Cell suspensions were seeded into each agarose-coated 
well containing 200 μL of  medium at a density of  2 x 104 per well 
using a liquid overlay technique. The cultures were monitored 
for medium depletion, and, if  necessary, 100μL of  medium was 
exchanged by gentle pipetting in/out on the well wall. Two cate-
gories of  spheroids were prepared: homotypic (for U87 MG and 
MCF-7) and heterotypic (co-cultures of  MCF-7/Hs27 in ratios 
of  3/1 or 1/1). For longer growth periods, such as the 14-day cul-
ture of  homotypic MCF-7 spheroids, the medium was refreshed 
on days 5 and 10 by replacing 100 μL with fresh medium. The 
growth medium was removed on the day of  embedding, and the 
spheroids were fixed using 4% paraformaldehyde for 24 hours.

Spheroid morphological analysis

Image acquisition  

Spheroid images were acquired with an inverted brightfield 
microscope (Axiovert 200 equipped with AxioCam MRm con-
trolled by AxioVision 6.9, Zeiss) using a 4x objective. This setup 
allows the entire well to be viewed clearly, with each image pix-
el corresponding to 3.448 µm. Images were acquired from each 
well on different days. The conditions in which the images were 
obtained were identical (illumination parameters, objective, ex-
posure time, etc.). Images were stored as .tiff  files and named 
according to well origin and date. 

Image segmentation and parameters for analysis 

The OrganoSeg software (a digital image segmentation plugin 
developed under MATLAB) [20] was used to profile 3D cultures 
over time. The software was preferred due to its capability to 
address challenges like a large number of  images, artifact shapes, 
discrimination from cell debris, nonuniform blur, and spherical 
aberration from low-magnification imaging that could alter the 
analysis results.

Segmentation consisted of  obtaining an optimal contour 
delineation of  the spheroid image by dynamically varying the 
three parameters: Intensity (Otsu) threshold, Window size, and 

models that include not just cancer cells but also stromal and im-
mune cells, accurately recreating the tumor microenvironment 
as well. 3D bioprinted models can be customized to replicate 
specific tumor types and microenvironments, offering a powerful 
platform for drug screening and disease modeling.

Furthermore, in the context of  ongoing regulatory updates at 
the Food and Drug Administration, cellular 3D and computer 
models are increasingly prioritized as alternatives to animal test-
ing. These models align with the 3Rs of  animal experiments—
Replacement, Reduction, and Refinement—to assess the safety 
and effectiveness of  drugs [15,16]. In drug development, 3D 
models have improved the predictive accuracy of  preclinical test-
ing, reducing the failure rate of  drugs in clinical trials by better 
mimicking how cancer cells respond to treatments in personal-
ized medicine approaches.

Considering the increasing interest in developing 3D cell cul-
ture models, the techniques to obtain such models are getting 
better in terms of  outcome and resource exploitation. Moreover, 
the methods used for the complex characterization of  these mod-
els (e.g., antibody multiplexing) must keep pace with this fast de-
velopment. To evaluate various research targets based on radial 
position within a spheroid, obtaining high-magnification images 
is critical to ensure accurate quantitative representations. How-
ever, 3D imaging involves a trade-off  between maximal numer-
ical aperture (essential for Z-resolution) and working distance. A 
larger numerical aperture results in shorter working distances, 
limiting imaging depth. Therefore, selecting an optimal method 
for volume rendering depends on the required level of  detail. De-
spite advances allowing deeper tissue penetration through clear-
ing techniques, challenges such as antibody penetration and fluo-
rophore spectrum overlap remain significant obstacles for in situ 
imaging studies [17]. Although there is a continuously growing 
body of  methods to analyze 3D cultures, immunohistochemistry 
(IHC) remains the gold standard for the histological evaluation 
of  the interactions between cells and stroma (especially when the 
spheroid’s core sections are of  interest) [18].

This paper proposes a method for embedding spheroids in 
agarose microwell arrays specifically designed to facilitate sub-
sequent IHC processing. This technique enables simultaneous 
sectioning of  an entire batch of  3D cultured spheroids, with each 
histological section providing an opportunity for cellular and mo-
lecular profiling of  designated regions. The feasibility of  the pro-
cedure was tested on spheroids derived from U87 MG glioblas-
toma and MCF-7 adenocarcinoma cells. Several IHC tests were 
performed on 48 spheroid grids per glass slide while maintaining 
annotations of  their well locations.

MATERIAL AND METHODS

Spheroid formation

2D cell culturing  

U87 MG (human primary glioblastoma, HTB-14, ATCC), 
MCF-7 (human breast adenocarcinoma, HTB-22, ATCC), and 
Hs27 (human fibroblast, CRL-1634, ATCC) cell lines (at a low 
passage number) were propagated in 2D culture according to 
their specific protocol and under standard growth conditions (5% 
CO2, 37oC, humid atmosphere). The growth medium was used 
according to cell line specifications as follows. For MCF-7 and 
Hs27: EMEM (Eagle's Minimum Essential Medium, 30-2003, 
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Agarose microwell array fabrication 

Melted agarose solution was pipetted in a tray (with appropriate 
dimensions for the mold to fit in). The mold was then allowed to 
float on the surface of  the liquid agarose (Figure 4A). To elimi-
nate any trapped air bubbles, the handlebar was gently pressed 
and tapped. The agarose solution was allowed to gel for 5 min 
at 4oC and 1 min at -18oC. Then, the mold was gently removed 
from the tray, and an agarose 48 microwell array was formed 
(Figure 4B). Each microwell accommodates approximately 50 µL 
of  liquid.

Spheroids embedding  

The fixed spheroids were gently transferred (with approximately 
50 µL of  paraformaldehyde) from the 96 well plates to two aga-
rose microwell arrays (totaling 96 microwells). For the transfer, 
200 µL tips were adjusted by cutting, thus allowing for spheroids 
to pass without disruptions. Afterward, the agarose microwell ar-
ray was subjected to centrifugation at 100×g for 1 min to provide 
an even layering of  the spheroids into the microwells. The array 
was then covered with a layer of  approximately 1.5 mm height 
of  1% low melting agarose (A4108, Sigma). The agarose displac-
es thus the paraformaldehyde solution and air bubble trapping 
is avoided. The microarrays containing the sealed embedded 
spheroids were stored in paraformaldehyde before IHC.

Immunohistochemistry

Sample preparation for IHC  

The sealed microwell arrays were placed in histological cassettes 
and processed using a tissue processor (Epredia Excelsior AS). 
Briefly, they were dehydrated in a series of  alcohol solutions with 
increasing concentrations (50%, 70%, 90%) followed by four 
baths of  absolute methanol, 1 h each. Afterward, the samples 

Size threshold, as defined by another study [20]. The following 
parameter ranges were used for segmentation: Intensity (Otsu) 
threshold = 0.183–1, Max-window size = 100–370 pixels, Size 
threshold = 148–3130 pixels. On segmented images, various 
morphological and statistical parameters may be computed (e.g., 
axes, area, perimeter, kurtosis, skewness, correlation).

In this study, the growth of  spheroids was monitored by mea-
suring the morphological parameter volume over time, comput-
ed according to the equation:

V = 0.5 ∙ L ∙ l 2

where L is the long axis and l is the short axis of  the spheroid [21].
As OrganoSeg exports data as one image–one worksheet, an 

Ablebits Microsoft Excel extension (Office Data Apps) was used 
to merge individual worksheets into one [22].

For further analysis, only spheroids satisfying the following 
morphological criteria were selected: (1) a minimum l ≥ 200 µm, 
(2) the presence of  a single spheroid per well, and (3) a sphericity 
index (SI) > 0.6 (where S I = √L ⁄ l ).

Agarose microwell array

Mold design and printing  

A mold was designed in Fusion360 and printed from poly-lactic 
acid using a filament printer (Snapmaker 2.0). The mold features 
48 rounded parabolic pegs, each 3 mm in height and 2 mm in 
maximum diameter, arranged in 6 columns and 8 rows. (Figure 
3). The design also includes a handlebar on the opposite side of  
the pegs to facilitate handling. Prior to use, the mold was sprayed 
with silicone to ensure easy release from the agarose without ad-
herence.

Figure 3. Schematics of the mold used for obtaining the agarose microwell array

Figure 4. Fabrication and visualization of agarose microwell arrays. A, Workflow for obtaining the agarose microwell array; B, Image of the 
resulting agarose microwell array.

A B
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The growth rates, compactness, and manipulation stability of  
spheroids varied among different cell types. By monitoring the 
spheroids under a microscope and using OrganoSeg analysis, re-
searchers can determine the optimal day to collect spheroids for 
embedding and subsequent IHC evaluation.

Homotypic spheroids obtained from the U87 MG cell line 
were compact and round (Figure 6A). The volume of  spheroids 
increased over the monitoring period (Figure 6B), displaying 
varying growth rates from the time of  cell seeding (Figure 6C). To 
assess the impact of  mechanical stress on morphological param-
eters and integrity, we conducted a test to compare the volume 
changes in spheroids that were undisturbed since seeding with 
those that had been pipetted once within the same well (Figure 
6D, volume values corresponding to day 9).

The MCF-7 spheroids had a different behavior than the U87 
MG ones. The MCF-7 homotypic spheroids were loose and had 
irregular shapes (Figure 7A), and their integrity was easily lost at 
the moment of  pipetting (data not shown). The volume of  ho-
motypic MCF-7 spheroids increased during the days of  moni-
toring, reaching a plateau in growth at day 14 (Figure 7B). This 
plateau was confirmed by the decrease in the speed of  growth for 
the second week of  growth (Figure 7C). The addition of  human 
fibroblast Hs27 to MCF-7 spheroids (MCF-7/Hs27 ratio 1/1 
or 3/1) improved their stability, allowing further manipulation. 
The Hs27 fibroblasts compacted the MCF-7 epithelial spheroids 
(Figure 7D), reflected by the decrease in volume in the case of  
heterotypic spheroids (Figure 7E).

The H&E staining of  U87 MG spheroids (Figure 8) showed 
malignant tumor proliferation, consisting of  anaplastic cells with 
intense-eosinophilic cytoplasm (focally vacuolated). Hyperchro-
mic, vesicular, and pleomorphic nuclei with prominent nucleoli 
and rare mitotic figures were also present. In spheroids larger 
than 400 µm in diameter, H&E staining revealed a central necro-

were cleared in xylene (three baths, 1 h each) and infiltrated with 
melted paraffin (two baths, 2 h each, under vacuum). Further, the 
samples were subjected to paraffin embedding (Leica HistoCore 
– Arcadia H). Then, the samples were cut into 3 µm thick slices 
(Leica HistoCore Biocut) and placed on glass slides to dry.

Sample IHC staining  

Slides were stained for EMA, p53, Ki-67 (for U87 MG spheroids) 
and for ER, PR, HER2, and Ki-67 (for MCF-7 spheroids) using 
an automated staining machine (BenchMark GX IHC/ISH). 
Roche Ventana monoclonal antibodies were used following the 
manufacturer protocols:

i/ for U87 MG: Anti-EMA (E29) Mouse Monoclonal Prima-
ry Antibody (790-4463), Anti-p53 (Bp53-11) (760-2542) Mouse 
Monoclonal Primary Antibody, Anti-Ki-67 (30-9) Rabbit Mono-
clonal Antibody (790-4286);

ii/ for MCF-7: Anti-Estrogen Receptor (ER) (SP1) Rabbit 
Monoclonal Primary Antibody (790-4324), Anti-Progesterone 
Receptor (PR) (1E2) Rabbit Monoclonal (IgG) Primary Antibody 
(790-2223), Anti-HER2/neu (4B5) Rabbit Monoclonal Primary 
Antibody (790-2991), Anti-Ki-67 (30-9) Rabbit Monoclonal An-
tibody (790-4286).

The presence of  the spheroids in each microwell and their 
integrity were confirmed by standard hematoxylin and eosin 
(H&E) staining (Leica Autostainer XL).

RESULTS

Figure 5 (A-E) presents the main workflow steps from 2D cell 
culturing to IHC analysis of  homotypic or heterotypic spheroids.

Figure 5. Comprehensive workflow for spheroid preparation and analysis. A, Generation of homotypic and heterotypic spheroids from U87 
MG and MCF-7 cell suspensions, followed by their growth on a low-adherence agarose surface; B, Microscopic image acquisition of spheroids and 
their morphological evaluation with OrganoSeg; C, Production of agarose microwell arrays; D, Transfer and embedding of spheroids into the 
agarose microwell array; E, H&E and IHC staining and analysis of spheroids.

A

B

C

D

E
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high-power field (Figure 8 – EMA). A significant loss of  p53 ex-
pression was noted, with nuclear expression in less than 5% of  
the spheroid cells (Figure 8 – p53). In contrast, intense nuclear 
expression of  Ki-67 in approximately 20-25% of  the spheroid’s 

sis area, which appears as an anucleate eosinophilic amorphous 
region, as shown in Figure 8 – H&E.

The epithelial membrane antigen (EMA) evaluation was neg-
ative, with no EMA dots or ring-like structures observed per 

Figure 6. Homotypic spheroids from U87 MG cell line. A, Sequential images of the same spheroid taken on days 2, 3, 5, and 9 post-seeding; 
B, Changes in spheroid volume over time, illustrating growth from the day of cell seeding; C, Analysis of growth rates, depicted as the speed 
of volume increase per day, during different stages of spheroid formation; D, Stability to manipulation as reflected in volumes at day 9 for two 
categories of spheroids: one-time pipetted versus not pipetted.

A

B

C

D

Figure 7. MCF-7 spheroids. A, Sequential images of a homotypic MCF-7 spheroid taken at days 1, 2, 4, 7, and 14 post-seeding, with edges highlight-
ed by OrganoSeg in blue; B, Graph showing the changes in the volume of homotypic spheroids over time from the day of seeding; C, Evaluation 
of spheroids growth as the speed of volume increase per day, for different periods during the formation of homotypic type; D, Images at day 7 
of a homotypic and a heterotypic spheroid; E, Comparison in volumes at day 7 between homotypic and heterotypic spheroids (MCF-7/Hs27, 1/1).

A

B

C

D

E
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DISCUSSION

Spheroids from U87 MG and MCF-7 cell lines were successfully 
cultured in wells coated with agarose using a liquid overlay tech-
nique. This approach prevented cell adhesion to the culture sur-
face and subsequent evolution towards 2D culture. Agarose was 
chosen for its biocompatibility, nutrient permeability, non-adhe-
sive properties, and cost-effectiveness. Embedding the spheroids 
in an agarose microwell array facilitated easy access to immuno-
histochemistry procedures.

U87 MG cells produced spheroids compact enough for em-
bedding as homotypic spheroids. In contrast, MCF-7 cells, after 
14 days of  growth, did not achieve sufficient mechanical resis-
tance to pipetting to permit embedding. For MCF-7, the addition 
of  Hs27 fibroblast cells was necessary to enhance the spheroids’ 
structural integrity. It is known that, in vivo, aggressive glioblas-
toma tumors develop high-density stroma (microenvironment) 
[23]. In the case of  breast adenocarcinoma, the epithelial origin 
of  the tumor exhibits a less dense microenvironment [24]. The 
fibroblasts are known to be the main contributor to the microen-
vironment stiffness [25].

Moreover, adding Hs27 fibroblasts facilitated the compactness 
required for embedding and reduced the time needed to develop 
transferable spheroids, eliminating the need for frequent growth 
medium renewal. Immunohistochemistry staining for both cate-

cells (Figure 8 – Ki-67) indicated high proliferation activity. These 
findings confirm the presence of  a glioblastoma-type tumor char-
acterized by diffused glioma and anaplastic features.

The H&E staining of  heterotypic MCF-7/Hs27 spheroids, 
with seeding ratios of  1/1 and 3/1 (Figure 9, top and bottom, 
respectively), showed malignant proliferation characterized by 
medium-sized, oval-shaped cellular placards with distinct bound-
aries. The cells exhibited abundant eosinophilic cytoplasm and 
large, hyperchromic, or vesicular round-oval nuclei with mod-
erate pleomorphism, prominent nucleoli, and rare, atypical mi-
toses.

IHC staining showed that approximately 70% of  cells ex-
pressed nuclear ER, and about 60% showed PR nuclear ex-
pression (similar results were obtained for both categories of  
spheroids). The IHC staining for HER2 was negative in both 
categories since incomplete and barely perceptible membrane 
expression in <10% of  spheroid cells were visible.

Ki-67 staining revealed nuclear expression in about 70% of  
cells in spheroids with a 1:1 seeding ratio (Figure 9 Ki-67, top) 
and in more than 80% of  cells in the other group (Figure 9 Ki-
67, bottom). Thus, both heterotypic spheroids were considered 
Ki-67 positive since more than 20% of  their cells were stained. 
These results confirmed the presence of  invasive breast carcino-
ma, indicative of  malignant ductal epithelium proliferation in the 
mammary gland (Luminal B-like HER2 negative).

Figure 8. Histological and immunohistochemical staining of U87 MG homotypic spheroid

Figure 9. Histological and IHC images of heterotypic spheroids: MCF-7/Hs27, ratio 1/1 (top row) and MCF-7/Hs27, ratio 3/1 (bottom row)
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layer. These cells may exhibit higher resistance to treatment or 
increased survival capacity in specific pathophysiological niches.
This observation warrants further evaluation, and if  confirmed, 
it could significantly impact future experimental work, including 
developing new, targeted drugs.

CONCLUSION
Innovative technological improvements have reinstated the in-
creasing interest in various spheroid cultures as pertinent mod-
els for drug screening or histological microenvironment-related 
studies. A simple, well-defined workflow was optimized to obtain 
high output in terms of  the number of  spheroids over short pe-
riods to obtain homotypic (U87 MG) and heterotypic (MCF-7/
Hs27) types of  spheroids dedicated to IHC analysis. The spher-
oid's integrity and growth rates were evaluated by morphological 
parameters analysis carried out semi-automatically using dedi-
cated software for large pools of  images. The spheroids batches 
were embedded in an agarose-based microwell array and were 
sectioned and stained with cell type-specific markers to reveal 
protein expression patterns while keeping the spheroid traceabil-
ity in conditions of  bulk workflow. 
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