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ABSTRACT
Insulin is the cornerstone of  treatment in type 1 diabetes mellitus. However, because of  its protein structure, insulin 
has to be administered via injection, and many attempts have been made to create oral formulations, especially using 
nanoparticles (NPs). The aim of  this study was to compare the hypoglycemic effect of  insulin-loaded NPs to that of  
subcutaneous insulin in an in vivo rat model of  diabetes. We used biodegradable D-α-tocopherol polyethylene glycol 
succinate-emulsified, chitosan-capped poly(lactic-co-glycolic acid) NPs loaded with soluble human insulin in a dose 
of  20 IU/kg body weight, and examined the physical characteristics of  NPs in vivo and in vitro. Serum glucose levels 
were reduced after 6 h, but the difference was not significant compared to subcutaneous insulin; at 12 h and 24 h, 
insulin levels were significantly higher in rats treated with NPs than in rats treated with subcutaneous insulin. There 
was no significant difference in serum insulin levels at 12 h and 24 h compared to non-diabetic rats. Our findings 
suggest that chitosan-based NPs are able to maintain good glycemic control for up to 24 h and can be considered a 
potential carrier for oral insulin delivery.
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INTRODUCTION

Diabetes mellitus (DM) is a significant health issue with a rising 
global prevalence [1,2]. Approximately 1.4 million Iraqis suffer 
from DM [3], the prevalence of  type 2 DM in Iraq ranging from 
9% to 14% [3]. A study conducted on over 5,400 individuals 
aged 19–94 years from the city of  Basrah, located in Southern 
Iraq, revealed an age-adjusted prevalence of  DM of  19.7% [4]. 
Owing to the increased burden of  DM, there is growing interest 
to examine the impact of  DM and its association with other con-
ditions in Iraqi patients [5–10].

Current therapies of  insulin-dependent type 1 DM (T1DM) 
are directed towards the substitution of  insulin, either orally [11–
14] or non-orally [15–17]. However, insulin delivered through a 
controlled-release system has significant shortcomings because of  
aggregation and precipitation. Owing to the short plasma half-

life of  insulin of  3–10 min and the fact that basal insulin returns 
to normal after 2–4 h following a meal [18,19], insulin exhibits 
poor physicochemical characteristics. The main obstacles to un-
modified intake and transport of  insulin into the circulatory sys-
tem are low pH and protease degradation, further exacerbated 
by its high molecular mass and hydrophilic character [20–22].

Patients with DM favor the oral administration of  insulin 
because it is easier and more convenient. Several insulin trans-
porters, such as polymeric nanoparticles (NPs), liposomes, and 
lipids, have been successfully synthesized in recent years [23–25]. 
Biodegradable polymer microspheres or NPs have shown prom-
ise in the oral administration of  protein and peptide medicines. 
Compared to microspheres, the advantage of  NPs is that they 
enter the gastrointestinal tract and are taken up by the M cells 
of  Peyer’s patches, the main entry point for NP absorption [26]. 
Poly(lactic-co-glycolic acid) (PLGA) NPs have gained significant 
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attention owing to their ability to encapsulate and deliver drugs 
in a controlled manner effectively. As a result, PLGA NPs have 
been extensively used as nanocarriers [27]. However, they have 
important shortcomings, such as selective interaction with muco-
sal surfaces [28,29].

N-trimethyl chitosan chloride (TMC) is a partially quaternized 
chemical derived from chitosan through reductive methylation 
[30]. In environments with a neutral pH, where chitosan is not 
soluble and does not improve permeability effectively, TMC re-
tains its positive charge, high solubility, and ability to promote 
permeation [31,32]. Insulin-loaded TMC NPs have a positive 
charge and a mucoadhesive nature, and are able to penetrate 
the intestinal epithelium [33]. In environments with high ionic 
strength, such as the intestinal fluid, the electrostatic connection 
between the negatively charged insulin and positively charged 
TMC weakens, leading to rapid insulin release from TMC NPs. 
Approximately 50% of  the insulin contained within TMC NPs is 
released in PBS within 1 h [34].

Although TMC NPs produced using the ionic crosslinking 
method are able to penetrate the intestinal epithelium, this ability 
can be further improved [33]. The aim of  this study was to com-
pare the efficacy of  insulin-loaded, D-α-tocopherol polyethylene 
glycol succinate (TPGS)-emulsified, chitosan-capped PLGA NPs 
to that of  subcutaneous insulin in an in vivo rat model of  diabetes 
and assess the physical characteristics of  synthesized NPs.

MATERIAL AND METHODS

Study design and settings   

The study included 32 male adult albino Wistar rats weighing 
180–250 g, marked on various body parts for easy recognition. 
Mean body weight variation did not exceed 20%. The rats were 
obtained from the Animal Facility of  the Biotechnology Research 
Center of  Al-Nahrain University, Baghdad, Iraq. Before the in-
vestigation, the rats were kept in a temperature-controlled setting 
(22 ± 2 °C) with a reversed diurnal period (12/12 h) and habitu-
ated for 7 days. Throughout the research, the animals were main-
tained on a standard pellet diet and access to water ad libitum 
supplied by the Biotechnology Research Center of  Al-Nahrain 
University. 

Diabetes was induced with streptozotocin (STZ) (Sigma Chem-
icals). Before the experiment, the serum glucose level of  the rats 
was measured to exclude the possibility of  spontaneous diabetes. 
Only rats with glucose levels of  50–70 mg/dl were included, as 
described in the literature [35]. The induction process lasted 72 
h, the experiment being conducted on day 4.

The rats were allocated randomly into four equal groups, as 
follows: group 1 acted as the negative control (n = 8); these ani-
mals did not undergo induction and were supplied with distilled 
water orally. Group 2 acted as diabetic control (n = 8); these rats 
were induced T1DM by intraperitoneal STZ injection and left 
without DM treatment during the experimental period. Rats in 
group 3 (n = 8) were induced T1DM by intraperitoneal STZ in-
jection and were administered human insulin subcutaneously at 
a dose of  1 IU/kg body weight, as described in the literature 
[36]. Rats in group 4 (n = 8) were induced T1DM by intraperito-
neal STZ injection and treated with human insulin coated with 
PLGA-chitosan-TPGS NPs at a dose of  20 IU/kg body weight. 
All drugs (except for subcutaneous insulin in group 3) were given 
orally. In the case of  group 4, the polymer was suspended in a 

sodium carboxymethyl cellulose (NaCMC) solution containing 
1% (w/v) sodium carboxymethyl cellulose (Figure 1).

Induction of diabetes in rats

The rats were acclimated and subjected to an overnight fast. 
Subsequently, they were administered a single intraperitoneal 
injection of  a freshly prepared solution of  STZ (60 mg/kg body 
weight) [37] in a 0.1 M cold citrate buffer (pH 4.5). During the 
induction, the rats were provided with a 5% glucose solution over 
night to mitigate severe hypoglycemia resulting from the exces-
sive release of  insulin generated by the administration of  STZ. 
The rats were classified as diabetic if  their blood glucose levels 
exceeded 250 mg/dl at 72 h after STZ administration. The ad-
ministration of  experimental therapy started on day 4 after the 
STZ injection [38]. Rats with no diabetes induction were sub-
jected to the same protocol, but instead of  STZ, they were ad-
ministered intraperitoneal injections of  0.9% saline solution. At 
the end of  this phase, animals that were not subjected to induc-
tion and had blood glucose levels of  <100 mg/dl were included 
in the negative control group.

Preparation of polymeric NPs

Human insulin, PLGA, chitosan, and TPGS NPs  

A solution was prepared by dissolving 100 mg of  PLGA copoly-
mer (PLGA 50/50) and 50 mg of  TPGS in 5 ml of  acetone. The 
solution underwent sonication for 60 s using a Sonicator S-4000 
probe sonicator (Misonix) (100 W, 22.5 kHz, 50% amplitude) 
while consistently stirring at 4 ℃. A volume of  2 ml of  human in-
sulin (100 IU/ml, Novo Nordisk) was added to the solution with 
continuous stirring, and the solution was subjected to sonication 
for another 60 s. The solution was kept in an ice bath, forming a 
water-in-oil (W/O) emulsion, then it underwent sonication again 
for 180 s, using an equivalent volume of  a 0.1% w/v chitosan 
solution prepared by dissolving chitosan in 1% v/v acetic acid. 
The sonication process was carried out under continuous stirring 
at a speed of  500 r.p.m. for 1 h. Following the completion of  the 
coating reaction, the mixture underwent a purification process 
involving three cycles of  centrifugation; this was done to separate 
the NP pellet from the supernatant, which contained the leftover 
chitosan solution (Figure 2).

Nanoparticle characterization 

Particle size and distribution, including mean diameter and 
polydispersity index (PDI), were assessed using dynamic light 
scattering with a NanoBrook 90Plus particle analyzer (Brookha-
ven Instruments) at the Nanotechnology and Advanced Materi-
als Research Centre of  the University of  Technology, Baghdad, 
Iraq. All measurements were done in triplicate.

Zeta potential (ζ) was assessed using a NanoBrook ZetaPlus an-
alyzer (Brookhaven Instruments) using electrophoretic light scat-
tering (ELS), as described previously [39], at the Nanotechnology 
and Advanced Materials Research Centre of  the University of  
Technology, Baghdad, Iraq.

Encapsulation efficiency was evaluated using the indirect tech-
nique [40] (Equation 1). In brief, the NPs were centrifuged at 
20,000 r.p.m. for 10 min, and the insulin content in the super-
natant was determined using an established high-performance 
liquid chromatography (HPLC) technique. Insulin retention time 
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Figure 1. Flow chart of the study
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sured using a HP1100 HPLC (Angilent). The experimental setup 
involved an HPLC system consisting of  a pump and a UV–V 
detector. Insulin elution was performed using a Hypersil ODS 
C18 column with dimensions of  200 × 4.6 mm, at 5 μm. The 
mobile phase consisted of  a combination of  water, acetonitrile, 
and trifluoroacetic acid in a ratio of  82:18:0.3. The flow rate 
used in the experiment was 1.0 ml/min.

Detection was performed at a wavelength of  210 nm. A vol-
ume of  20 μl of  the transparent supernatant was introduced into 
the HPLC apparatus. The peak area of  insulin was recorded, and 
the insulin concentration was calculated from a standard curve.

Sample size and randomization 

Sample size was computed using G Power [42] based on Cohen’s 
principles [43]. A table of  random integers was used to construct 
the groupings at random. The animals were placed in labeled 
containers and given tags for easy recognition [44].

Outcome measures

On the day of  the experiment, blood samples were drawn at 
regular intervals (at baseline and after 30 min, 3 h, 12 h, and 
24 h) for the biological study of  serum glucose (ACCU-CHEK 

was 7.9 ± 0.05 minutes with an injection volume of  30 µl. Insulin 
had a maximum wavelength of  detection (λmax) of  210 nm. In 
total, 5 mg of  NPs were dissolved in 5 ml of  acetone using vortex 
for 15 min before centrifugation at 12,000 r.p.m. at 4 °C for 10 
min. At 210 nm, the insulin concentration in the supernatant was 
measured using a PerkinElmer λ35 spectrophotometer (Perkin-
Elmer), as described in the literature [38]. 
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In vitro drug release from NPs

We recorded the in vitro release profile of  NPs in PBS at 37 °C. 
The amount of  released insulin was monitored spectrophoto-
metrically at 210 nm, as described in the literature [38]. Insulin 
release was maintained for 24 h.

HPLC  

As described previously by Zhang et al. [41], the NPs were isolat-
ed from the aqueous suspension medium using ultracentrifuga-
tion at 40,000g and 10 ℃ for 30 min. The quantity of  free insulin 
in the clear supernatant remaining after centrifugation was mea-

Figure 2. Synthesis of insulin-loaded NPs

Table 1. Assessment of NP characteristics

Name of polymer Particle size (nm) Zeta potential (mV) EE (%) PDI 

NP 247.6 ± 7.3 14.4 ± 2.1 47.3 ± 1.3 0.339 ± 0.02
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were measured using the sandwich-ELISA method (Rat Insulin, 
INS ELISA Kit, Sunlong).

Scanning electron microscopy

Surface morphology was examined at the Nanotechnology and 
Advanced Materials Research Center at the University of  Tech-
nology, Baghdad, Iraq, using a TESCAN MIRA3 scanning elec-
tron microscope (Tescan), at high resolution with a scale bar of  
200–500 nm [38]. 

Performa) and insulin levels (ELISA). After the experiment, total 
cholesterol, triglyceride, urea, creatinine, aspartate aminotrans-
ferase (AST), and alanine aminotransferase (ALT) levels were 
measured. Following completion of  therapy, all animals were 
fasted for 12 h and anesthetized intraperitoneally with 80 mg/
kg of  ketamine and 10 mg/kg of  xylazine. Following total anes-
thesia, all rats were killed by exsanguination (cardiac puncture), 
a procedure suitable for tissue harvest and conservation [45,46]. 

Hormonal and biochemical analysis

Biochemical parameters were analyzed using specific kits by 
Biolabo: cholesterol with CHOLESTEROL CHOD PAP, tri-
glycerides with TRIGLYCERIDES GPO Method, ALT with 
ALT-TGP Colorimetric Method, AST with AST-TGP Colori-
metric Method, urea with UREA Colorimetric Method, and cre-
atinine with CREATININE Colorimetric Method. Insulin levels 

Figure 4. SEM images of the insulin-loaded NPs

Figure 5. Cumulative insulin release profile for insulin-loaded NPs 
(pH = 7.4)

Figure 3. Assessment of the physical characteristics of NPs

Figure 6. Assessment of fasting blood glucose throughout the 
study period

Figure 7. Percentage of initial blood glucose (%)
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In vivo study

Effect on blood glucose levels 

There were no significant differences between the serum glucose 
levels of  rats treated with subcutaneous insulin and NPs after 6 h. 
However, glucose levels remained significantly lower in rats treat-
ed with NPs than in those treated with subcutaneous insulin at 24 
h. The largest effect of  NPs on glucose levels could be observed 
after 12 h and was not significantly different than in the control 
group (Figures 6 and 7, and Table 2).

Effect on insulin level   

After 6 h, serum insulin levels were significantly higher in rats 
treated with NPs than those treated with subcutaneous insulin, 
and this effect was maintained after 24 h (Table 3).

Assessment of biochemical parameters

Changes in biochemical parameters after the end of  the experi-
ment are presented in Table 4.

Statistical analysis  

Statistical analysis was carried out using GraphPad Prism v.10.0.0 
for Windows (GraphPad Software). Continuous variables were 
assessed using analysis of  variance (ANOVA) (normal distribu-
tion was assessed using the Anderson–Darling test) and pairwise 
comparisons were made using the post-hoc Tukey test. A two-
tailed P value of  <0.05 was considered statistically significant.

RESULTS

Characterization of NPs   

Particle size, zeta potential, entrapment efficiency, and PDI are 
presented in Figures 3 and 4, and Table 1.

In vitro release

The cumulative insulin release was almost linear throughout the 
assessment (Figure 5).

Table 2. Assessment of fasting blood glucose 

Baseline 0.5 h 3 h 6 h 12 h 24 h

Group 1 93.11 ± 5.9a 97.89 ± 8.53a 100.34 ± 3.11a 96.01 ± 7.16a 98.54 ± 6.19a 100.33 ± 8.17a

Group 2 568.4 ± 77.9b 538.91 ± 40.24d 575.43 ± 42.77c 577.80 ± 40.41c 569.43 ± 60.99d 529.11 ± 66.5c

Group 3 562.4 ± 57.2b 207.53 ± 19.91b 122.85 ± 13.07a 234.85 ± 29.09b 477.10 ± 42.02c 525.86 ± 63.18c

Group 4 534.6 ± 72.2b 379.27 ± 55.23c 308.87 ± 49.33b 215.42 ± 50.02b 148.83 ± 29.71a 270.20 ± 63.26b

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

In each column, there are statistically significant differences between values marked with different letters, and no statistically significant differences 
between values marked with identical letters (P > 0.05). One-way ANOVA, post-hoc Tukey test

Table 3. Assessment of fasting insulin  

Baseline 0.5 h 3 h 6 h 12 h 24 h

Group 1 3.19 ± 0.12a 3.26 ± 0.18d 3.11 ± 0.11c 3.31 ± 0.118c 3.19 ± 0.20c 3.20 ± 0.19c

Group 2 0.51 ± 0.21b 0.41 ± 0.13a 0.35 ± 0.11a 0.45 ± 0.12a 0.43 ± 0.14a 0.36 ± 0.10a

Group 3 0.36 ± 0.17b 1.76 ± 0.18c 3.12 ± 0.29c 0.52 ± 0.15a 0.47 ± 0.19a 0.58 ± 0.11a

Group 4 0.58 ± 0.12b 1.00 ± 0.25b 2.01 ± 0.31b 2.12 ± 0.48b 2.53 ± 0.36b 1.70 ± 0.27b

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

In each column, there are statistically significant differences between values marked with different letters, and no statistically significant differences 
between values marked with identical letters (P > 0.05)

Table 4. Assessment of biochemical parameters

Groups Triglyceride Total cholesterol ALT AST Urea Creatinine

Group 1 131.65 ± 16.69a 68.20 ± 1.83a 49.59 ± 8.04a 29.18 ± 5.60a 33.33 ± 5.22a 0.51 ± 0.08a

Group 2 530.90 ± 19.96d 119.53 ± 2.32d 124.28 ± 21.70b 86.48 ± 18.99b 100.39 ± 16.76d 2.23 ± 0.43d

Group 3 481.34 ± 15.60c 109.50 ± 2.90c 106.41 ± 19.24b 67.00 ± 18.99b 77.34 ± 16.83c 1.78 ± 0.28c

Group 4 329.20 ± 14.97b 79.87 ± 2.86b 64.50 ± 12.68a 47.88 ± 9.89a 55.78 ± 15.04b 1.09 ± 0.24b

P value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

In each column, there are statistically significant differences between values marked with different letters, and no statistically significant differences 
between values marked with identical letters (P > 0.05)
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Investigations regarding the effect of  oral insulin using PLGA–
hypromellose phthalate 55 (Hp55) NPs [56], chitosan-coated 
PLGA NPs [57], and sodium deoxycholate complex-loaded 
PLGA NPs revealed that each of  these complexes is effective in 
lowering blood glucose levels and their effect is similar to the that 
of  the NPs analyzed in this study with human insulin at a dose of  
20 IU/kg body weight [58].

Wu et al. used Hp55-coated capsules with insulin-loaded 
PLGA/RS (Eudragit RS, Evonik Industries) NPs to investigate 
their efficacy in reducing blood glucose levels in a rat model of  
diabetes induced with STZ and reported a sustained glucose-low-
ering effect [59]. Similarly, Kumar et al. found that insulin-loaded 
PLGA NPs effectively decreased serum glucose levels in rats with 
diabetes induced with STZ [60].

Assessment of safety

We observed the most substantial decrease in triglyceride and to-
tal cholesterol levels in the group of  rats treated with NPs. Con-
sistent with the results of  previous studies [38,61], triglyceride 
and total cholesterol levels were significantly higher in diabetic 
rats than in non-diabetic rats. There were no significant differ-
ences in ALT and AST levels between rats treated with NPs and 
non-diabetic rats. Urea and creatinine levels were higher in rats 
treated with NPs compared to non-diabetic rats, whereas ALT, 
AST, urea, and creatinine levels were lower in rats treated with 
NPs compared to diabetic rats treated with subcutaneous insulin 
and rats without treatment. 

The increase in blood urea concentration observed in diabet-
ic rats may be attributed to a decrease in the level of  plasma 
proteins, an increase in the level of  circulating amino acids, and 
hepatic deamination. Renal impairment could also be a con-
tributing factor [62]. Creatinine is synthesized through the non-
enzymatic degradation of  creatine phosphate within myocytes. 
Fluctuations in creatinine levels are thought to be an indicator 
of  compromised glomerular function, and these fluctuations are 
linked to the nephrotoxic effects of  diabetes [63]. NPs reduced 
all of  these effects.

ALT and AST are mostly endogenous enzymes within cells. 
However, they can be released into the bloodstream due to cel-
lular damage, making them valuable diagnostic biomarkers, par-
ticularly for liver injury. In diabetes, aminotransferase activity is 
increased [38,64]. As shown in the current study, insulin-loaded 
NPs may protect against STZ-induced diabetic liver damage.

CONCLUSION
In this study, chitosan-based PLGA NPs produced a glucose-low-
ering effect that was maintained for 24 h. In terms of  safety, NPs 
reduced total cholesterol, triglyceride, ALT, AST, urea, and creat-
inine levels compared to those in non-treated diabetic rats. These 
findings suggest that chitosan PLGA –TPGS NPs are an effective 
and safe candidate for oral insulin delivery.  
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DISCUSSION

Efficacy of NPs   

PLGA copolymers have been frequently used as an insulin deliv-
ery system for oral administration [47]. Particle size has a signif-
icant impact on the intestinal absorption of  polymeric NPs, the 
absorption of  NPs with a diameter of  <500 nm being hundreds 
of  times higher than that of  particles with a diameter of  >500 
nm [48]. In this study, the particle size of  NPs was 247.6 ± 7.3 
nm, which resulted in enhanced systemic absorption, as shown in 
previous studies [36,41,48].

The rate of  insulin secretion exhibited a fast initial increase 
within the first 6 h, followed by a subsequent deceleration 
throughout the remaining duration of  the study. This finding 
suggests that insulin was present on the surface of  the NPs. 
During the production process of  chitosan PLGA NPs, insulin 
can be included in the coating process; this involves enveloping 
negatively charged PLGA NPs with positively charged chitosan. 
The observed decrease in insulin discharge suggests that a signif-
icant portion of  the insulin is enclosed within the matrix of  the 
NPs [41].

The zeta potential of  the CS-PLGA-NPs exhibited a positive 
charge (14.4 ± 2.1 mV), which can be attributed to the presence 
of  chitosan covering. NPs with a positive charge have a higher 
degree of  efficacy in interacting with biomembranes than those 
with a negative charge. The smooth muscle cells in the gastroin-
testinal tract contribute to its overall surface charge of  approxi-
mately −50 mV. Cell permeability and transport efficiency are 
altered by interactions that involve positively charged NPs and 
negatively charged cells, which occur as a result of  electrostatic 
forces [49].

TPGS is an effective emulsifying agent that increases solubility 
and bioavailability. The analytical settings, including sonication 
duration, sonication rate, centrifugal time, and centrifugal speed, 
have been tuned so that the series yields NPs of  almost the same 
size. The particle diameter should be <500 nm to maximize in-
teraction with the intestinal mucosa and enhance insulin absorp-
tion via the digestive system [50].

In this study, insulin-loaded NPs were administered to rats with 
induced diabetes. The NPs exhibited efficacy in decreasing blood 
glucose levels, with the hypoglycemic effect persisting for 24 h 
and manifesting as early as 6 h. Other studies have reported sim-
ilar findings [41,51,52].

Delivered orally, insulin degrades in the stomach due to the 
presence of  gastric proteolytic enzymes [53]. Therefore, oral in-
sulin should be enclosed in a matrix-like structure for protection 
against digestive enzymes; this is made possible by encapsulating 
the insulin molecules in a chitosan NP matrix. Owing to the mu-
coadhesive and soluble qualities of  chitosan and its ability to pre-
vent protein aggregation, this formulation remains concentrated 
for a longer period in the small intestine, resulting in delayed ab-
sorption and extended availability in the circulation [54].

In our study, the duration of  the glucose-lowering effect 
achieved through the oral administration of  insulin-loaded NPs 
was much longer than the effect of  free insulin. A comparative 
analysis of  the pharmacological effects of  insulin-loaded NPs 
and orally administered free insulin revealed that NPs exhibited 
enhanced insulin absorption, potentially attributed to their abili-
ty to extend the retention time of  insulin at the intestinal mucosa 
and facilitate its internalization by enterocytes [55].
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