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ABSTRACT
Aging, a complex physiological process affecting all living things, is a major area of  research, particularly focused on 
interventions to slow its progression. This study assessed the antiaging efficacy of  dapagliflozin (DAPA) on various 
aging-related parameters in a mouse model artificially induced to age. Forty male Swiss albino mice were randomly 
divided into four groups of  ten animals each. The control group (Group I) received normal saline. The aging model 
group (Group II) was administered D-galactose orally at 500mg/kg to induce aging. Following the aging induction, 
the positive control group received Vitamin C supplementation (Group III), while the DAPA group (Group IV) was 
treated with dapagliflozin. The inflammatory mediators (TNF-α and IL-1β) showed similar patterns of  change. No 
statistically significant difference was observed between groups III and IV. Both groups had significantly lower val-
ues compared to GII, while it was significantly higher compared to GI. Glutathione peroxidase (GSH-Px) showed 
no statistically significant difference between groups GIII and GIV, but it was higher in GIII compared to GII and 
significantly lower in GIII compared to GI. The study demonstrated that dapagliflozin exerts a beneficial impact on 
many indicators of  aging in mice. The intervention resulted in a reduction in hypertrophy in cardiomyocytes, an en-
hancement in skin vitality, a decrease in the presence of  inflammatory mediators, and an improvement in the efficacy 
of  antioxidants.
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INTRODUCTION

Aging is a natural physiological process characterized by progres-
sive changes at the cellular level. These changes impact the struc-
ture and function of  cells and their surrounding environment. In-
juries and accumulated damage throughout life contribute to this 
decline, gradually disrupting the body's regulatory systems [1]. 
There are several prevalent characteristics of  aging in mammals. 
Firstly, there is a noticeable rise in mortality rates after reaching 
maturity [2]. Additionally, there are notable alterations in the 
biochemical makeup of  tissues as mammals age. These chang-
es often manifest as decreased muscle mass and total density of  
bones in humans and the accumulation of  lipofuscin, a pigment 

associated with aging [3]. Various factors contribute to aging, but 
the primary factor is the progressive buildup of  molecular dam-
age that occurs randomly and remains unrepaired. This damage 
disrupts cellular functions and can lead to abnormalities, ulti-
mately impacting tissue health and promoting aging [4]. Some 
mechanisms involved include genomic instability [5], telomere 
attrition [6], epigenetic alterations [7], and loss of  proteostasis 
[8]. These processes operate within a multi-layered model, work-
ing in conjunction to ultimately contribute to the progression of  
the aging process [9]. Physiological aging significantly influences 
most biological systems in the human body [10]. The impact of  
aging on the skin has been a significant topic of  discourse across 
various disciplines for an extended period [11]. The process of  
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skin aging can be classified into two categories: intrinsic aging, 
which occurs chronologically from within the body, and extrinsic 
aging, which is attributed to external influences [12]. 

Dapagliflozin (DAPA) is a novel antihyperglycemic drug that 
selectively blocks the sodium-glucose cotransporter-2 (SGLT2) 
in a competitive and reversible manner. It belongs to a recent 
class of  medications used for managing type 2 diabetes. The in-
hibition of  SGLT2 by DAPA results in a reduction of  glucose 
reabsorption into the systemic circulation. This leads to increased 
glucose filtration via the renal system and subsequent excretion 
in the urine, ultimately decreasing glucose levels. Notably, this 
effect is independent of  the action of  insulin [13-15]. DAPA has 
also been recognized for its antioxidant properties, offering cellu-
lar protection by scavenging oxidative free radicals. This reduces 
oxidative damage by modulating the function or production of  
pro-oxidant enzymes, such as Nox4, endothelial nitric oxide syn-
thase, and xanthine oxidase [16]. DAPA has anti-inflammatory 
properties by reducing the amount of  inflammatory cytokines 
mRNA, such as interleukin-1 beta (IL-1β) and IL-6. Addition-
ally, it enhances the expression of  anti-inflammatory cytokines 
mRNA, such as IL-10, and promotes a boost in the ratio of  M2/
M1 phenotypic macrophages. The M1 phenotype of  macro-
phages is characterized by its pro-inflammatory properties, while 
the M2 phenotype exhibits anti-inflammatory characteristics 
[17]. This study aimed to evaluate the effectiveness of  DAPA in 
mitigating age-related changes in mice with induced aging by an-
alyzing various physiological parameters.

MATERIAL AND METHODS

Study design  

Forty male Swiss albino mice, aged 3-6 months and weighing 
20-30 grams, were obtained from the National Center for Drug 
Control and Research and housed in polypropylene cages. These 
mice were randomly divided into four groups, each comprising 
10 mice. Individual mice were identified by labeling different 
body parts. The housing conditions were maintained at 22 ± 2 
°C, with an inverted 12-hour light-dark cycle. Before the exper-
iment began, mice underwent a two-week acclimation period at 
the Animal Facility of  Al-Nahrain University - Biotechnology 
Research Center, Baghdad, Iraq. During this time, mice were 
provided with a standard pellet diet and unlimited access to wa-
ter. Details of  the animal allocation are provided in Table 1 and 
illustrated in Figure 1 [18-22].

Preparation of compounds 

D-Galactose (Sigma Aldrich, CAS No. 59-23-4), DAPA (Hang-
zhou Hyper Chemicals Limited, CAS No. 461432-26-8), and Vi-

tamin C (Hangzhou Hyper Chemicals Limited, CAS No. 86404-
04-8) were used.

Induction and assessment of aging in mice 

To induce an aging phenotype, 30 male Swiss albino mice were 
administered D-galactose (500 mg/kg body weight) orally via 
gastric gavage for six weeks. Mice were monitored for phenotypic 
changes associated with aging, such as ruffled fur, rounded body 
shape, decreased alertness and activity, and skin wrinkling. Addi-
tionally, their movements were observed for reduced responsive-
ness or increased caution compared to younger mice (Figure 2) 
[23]. Mice not exhibiting these aging characteristics were exclud-
ed to ensure a consistent aging model across the study.

Sample size and randomization  

The sample size for this study was calculated using the G*Power 
program [24] based on Cohen's principles [25]. The random-
ization into different experimental groups was achieved using a 
table of  random integers to prevent selection bias. Each mouse 
was systematically placed in a specifically labeled container to 
facilitate clear identification and avoid confusion, and a unique 
tail tag was given [26].

Tissue collection and analysis

The weight of  all mice was recorded at the start and end of  the 
study. After a 12-week treatment period and following a 12-hour 
fasting period, mice were anesthetized with a combination of  
80 mg/kg of  ketamine and 10 mg/kg xylazine administered in-
traperitoneally (IP). Complete anesthesia was confirmed before 
euthanasia by exsanguination via heart puncture, a method suit-
able for subsequent tissue collection and preservation [27,28].  
Post-euthanasia, the mice were dissected, and the hearts were 
excised and weighed to calculate the organ index, utilizing the 
equation as described by Chen et al. [29].

1 
 

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂	𝑖𝑖𝑂𝑂𝑖𝑖𝑖𝑖𝑖𝑖	(%) =
𝑜𝑜𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂	𝑤𝑤𝑖𝑖𝑖𝑖𝑂𝑂ℎ𝑡𝑡	(𝑂𝑂)
𝑏𝑏𝑜𝑜𝑖𝑖𝑏𝑏	𝑤𝑤𝑖𝑖𝑖𝑖𝑂𝑂ℎ𝑡𝑡	(𝑂𝑂) 	𝑖𝑖	100%	

 A 1 mm-thick skin segment was also collected from the dorsal 
region. The heart tissue was divided into two sections. A single 
specimen was employed for histological examination. This spec-
imen was initially rinsed with phosphate-buffered saline (PBS) at 
a pH of  7.4 and prepared using the paraffin-embedding tech-
nique [30]. The additional heart and skin tissue was isolated 
and subjected to a cold phosphate buffer saline (PBS, pH 7.4) 
rinse. Subsequently, the tissue was dried using filter paper and 
utilized for ELISA analysis using an ELISA reader from Diag-
nostic Automation/Cortez Diagnostics. Additionally, the tissue 
was weighed using a sensitive balance. For the ELISA, 50 mg of  

Table 1. Animal treatment groups

D-galactosea Drug received Duration 

Group I [18] No Normal saline by gastric gavage 6 weeks

Group II [19] Yes - 6 weeks

Group III [18,20] Yes Vitamin C (100 mg/kg) 6 weeks

Group IV [21,22] Yes DAPA (1 mg/kg) 6 weeks

a dosage of 500mg/kg of D-galactose orally by gastric gavage for 6 weeks



JOURNAL of MEDICINE and LIFE

159JOURNAL of  MEDICINE and LIFE. VOL: 17 ISSUE: 2 FEBRUARY 2024

© 2024 by the authors. This article is an open access article distributed under the terms and conditions of  the Creative Commons Attribution (CC BY 4.0) license.

each tissue was placed in an Eppendorf  tube with 0.45 ml of  cold 
PBS. The tissues were then mechanically homogenized using an 
electric tissue homogenizer (Staruar) while maintaining the sam-
ple on ice. Subsequently, the tissue was finely chopped into small 
fragments and placed in a beaker containing ice to maintain a 
low temperature. The sample was homogenized using an electri-
cal tissue homogenizer (Staruar). The resulting homogenate was 
centrifuged at 4°C and 2000 rpm for 20 minutes using a cold 
centrifuge (Thermos Scientific). The supernatant was extracted 
utilizing a micropipette manufactured by Bioevopeak and pre-
served at a temperature of  -20°C for future analysis [31].

Assessment of hypertrophic cells in heart tissue  

Five cross-sectional heart tissue images were captured for each 
mouse using a digital camera attached to a light microscope 
(BX-FLA; Olympus). A histopathologist assessed the presence 

Figure 1. Study flowchart 

Figure 2. Induction of the aging process in mice



JOURNAL of MEDICINE and LIFE

160 JOURNAL of  MEDICINE and LIFE. VOL: 17 ISSUE: 2 FEBRUARY 2024

© 2024 by the authors. This article is an open access article distributed under the terms and conditions of  the Creative Commons Attribution (CC BY 4.0) license.

viation (SD). The Shapiro-Wilk test confirmed that all variables 
were normally distributed. Differences among groups were eval-
uated using one-way ANOVA, with post hoc comparisons made 
via Tukey's test. A P value of  ≤0.05 was considered statistically 
significant.

RESULTS

Inflammatory mediators and oxidative stress markers   

Inflammatory mediators, including TNF-α, IL-1β, and MDA, 
were significantly elevated in the D-galactose-induced aging 
group (GII) compared to the control group (GI) (P <0.0001). No 
statistically significant difference was observed between groups 
GIII and GIV. However, GIII and GIV had significantly lower 
values than GII and significantly higher values than GI. The ac-
tivity of  glutathione peroxidase (GSH-Px) was significantly low-
er in the induction group (GII) compared to the control group 
(GI) (P <0.0001). There was no statistically significant difference 
between GIII and GIV. However, the mean value of  GIII was 
significantly greater than that of  GII but significantly lower than 
that of  GI (Table 2).

Cardiac and skin biomarkers 

The mean organ index of  the heart and the count of  hypertro-
phy cells in the heart were significantly higher in the induction 
group (GII) compared to the control group (GI) (P <0.001). 
There was no statistically significant difference between GIII and 
GIV, although both showed lower values than GII and higher 
than GI (Table 2). Skin collagen markers COL-1 and COL-III 
were significantly decreased in GII compared to GI (P <0.0001), 
with GIII showing higher levels than GIV (Table 3).

of  hypertrophic cells, counting their number across five high 
power fields (HPF) at 400x magnification, corresponding to an 
approximate area of  1 mm². This method, adapted from Cree 
et al. and based on the World Health Organization (WHO) clas-
sification of  tumors, involved enumerating hypertrophic cells 
characterized by increased size, bizarre shapes, irregular and hy-
perchromatic nuclei, as seen in H&E-stained sections. The total 
cell count across these fields was considered the hypertrophic cell 
count for each specimen.

Biochemical analysis 

The supernatants previously stored from homogenized heart 
and skin tissues were thawed for biochemical assays. The con-
centrations of  tumor necrosis factor-alpha (TNF-α), interleukin-1 
beta (IL-1β), glutathione peroxidase (GSH-Px), malondialdehyde 
(MDA), collagen I (Col-I), and collagen III (Col-III) were mea-
sured using the double-sandwich ELISA technique. Specific ELI-
SA kits from Sunlong Biotech were employed for each biomarker 
(Product IDs: TNF-α SL0547Mo, IL-1β SL0316Mo, GSH-Px 
SL0241Mo, MDA SL0370Mo, Col-I SL0141Mo, Col-III SL-
0942Mo).

Light microscopy

Cardiac myocyte morphology was examined using an Olympus 
BX51 Microscope (Olympus Corporation). Observations were 
made randomly across five different zones per slide, including 
the corners and center, at a 40x magnification level.

Statistical analysis 

Data analysis was performed using GraphPad Prism version 
10.0.1, presenting descriptive statistics as mean ± standard de-

Table 2. Effect of DAPA and Vitamin C on inflammatory mediators and oxidative stress markers 

Groups TNF-α
Mean ± SD

IL-1β
Mean ± SD

GSH-Px
Mean ± SD

MDA
Mean ± SD

GI: Normal control 27.70 ± 1.57a 16.08 ± 3.17a 5.10 ± 0.53a 22.92 ± 7.72a

GII: Induction 299.60 ± 92.96b 68.40 ± 6.20b 0.29 ± 0.15b 217.15 ± 55.25b

GIII: Vitamin C 100 mg/kg after end of induction 87.66 ± 8.64c 29.42 ± 4.42c 3.86 ± 0.54c 56.60 ± 7.94c

GIV: DAPA 1 mg/kg after end of induction 91.52 ± 8.87c 30.69 ± 4.52c 3.59 ± 0.75c 62.30 ± 9.92c

P value <0.0001***# <0.0001***# <0.0001***# <0.0001***#

Columns with similar letters indicate no significant difference (P value ≥0.05), while different litters indicate a significant difference (P value <0.05)

Table 3. Evaluation of heart organ index and skin collagen

Groups COL-1
Mean ± SD

COL-III
Mean ± SD

Heart hypertrophic cell count
Mean ± SD

Heart index
Mean ± SD

GI: Normal control 3,095.34 ± 295.70a 2,895.34 ± 295.70a 21.70 ± 2.54a 0.35 ± 0.11a

GII: Induction 837.47 ± 244.55b 637.47 ± 244.55b 90.30  6.73b 0.83 ± 0.05b

GIII: Vitamin C 
100mg/kg 2,527.16 ± 323.56c 2,127.16 ± 323.56c 56.10 ± 5.67c 0.55 ± 0.07c

GIV: DAPA 1 mg/kg 1,756.86 ± 171.06d 1,556.86 ± 171.06d 59.20 ± 6.55c 0.57 ± 0.07C

P value <0.0001***# <0.0001***# <0.0001***# <0.0001***#

Columns with similar letters indicate no significant difference (P value ≥0.05), while different letters indicate a significant difference (P value <0.05)
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Histological observations  

Histological analysis confirmed normal cardiac cell morphology 
in the control group (GI) with normal nuclei (Figure 3). In con-
trast, the D-galactose group (GII) displayed irregular and hyper-
chromatic nuclei (Figure 4). The DAPA group (GIV) returned to 
normal cell morphology and nuclei (Figure 5).

DISCUSSION

In the current investigation, D-galactose administration in-
duced cardiac hypertrophy, an effect mitigated by treatment with 
DAPA, as evidenced by a reduced heart index compared to the 
D-galactose-only group. This is in line with findings from Refaie 
et al. [32], where DAPA was shown to counteract the increase in 
heart weight caused by Cadmium toxicity and further supported 
by research indicating the efficacy of  DAPA in reducing myocar-
dial hypertrophy [33]. 

Multiple studies have demonstrated that this drug category 
can potentially improve cardiac morphological alterations, such 
as heart hypertrophy and fibrosis. Sodium-glucose cotransporter 
2 inhibitors (SGLT2i) have been observed to reduce both cardi-
ac preload and afterload by reducing intracellular sodium (Na+) 
and calcium (Ca2+) loading. This suggests that DAPA, a specific 
SGLT2i, may have a preventive effect on cardiac hypertrophy 
[34]. One probable mechanism is that DAPA plays a positive 
role in cardiomyocytes by upregulating the expression of  Sirtuin 
1 (SIRT1) [35]. In cardiomyocytes, nuclear SIRT1 blocks myo-
cyte injury from oxidative stress by enhancing the expression of  
manganese superoxide dismutase (MnSOD) and increasing the 
expression of  antioxidants, such as catalase. Studies have shown 
that overexpression of  SIRT1 in the heart can attenuate age-de-
pendent increases in cardiac hypertrophy [36,37].

One of  the most significant alterations with age is a deregula-
tion of  the immune response, resulting in a chronic systemic in-
flammatory state [38]. This study evaluated various inflammato-
ry markers in heart tissue homogenates from different treatment 
groups. DAPA treatment, both during and after the induction 
phase of  aging, significantly reduced the levels of  TNF-α and 
IL-1β compared to the control group. These findings align with 
previous research by ElMahdy et al. [39], who demonstrated that 
DAPA treatment in rats fed a high-carbohydrate, high-fat diet 
(HFHC) significantly reduced TNF-α and IL-1β levels compared 
to the HFHC group alone. Similarly, Chen et al.  [40] revealed 
that mice treated with DAPA showed dramatic reduction in blood 
and cardiac levels of  IL-1β, TNF-α, and IL-6 levels compared to 
untreated mice with diabetes.

DAPA administration has been shown to reduce excess calci-
um, thereby mitigating inflammation and decreasing the levels of  
various pro-inflammatory cytokines, including those involved in 
the IL-1β pathway [41]. It also shifts M1 macrophages, typically 
associated with promoting inflammation, towards M2 macro-
phages, which are involved in healing and regeneration. These 
findings indicate that DAPA, independent of  glucose concentra-
tions, exerts direct anti-inflammatory effects by suppressing toll-
like receptor 4 (TLR-4) and nuclear factor kappa-light-chain-en-
hancer of  activated B cells (NF-kB) activation and the secretion 
of  pro-inflammatory mediators [42]. In addition, DAPA therapy 
increased IL-10 levels, which controls both acute and chronic 
inflammation by inhibiting the production of  proinflammatory 
cytokines from immune cells such as TNF-α [43].

Figure 3. Histological evaluation of cardiac tissue from Group I 
(H&E stain). Cardiac tissue section from Group I (treated with nor-
mal saline only) observed under light microscopy (Olympus BX51 
microscope with DP controller software at 40x magnification). The 
image shows typical cardiac cell morphology with normal nuclei (in-
dicated by black arrows). 

Figure 4. Histological evaluation of cardiac tissue from Group II 
(H&E stain). Cardiac tissue section from Group II (treated with D-ga-
lactose only) observed under light microscopy (Olympus BX51 micro-
scope with DP controller software at 40x magnification). The image 
highlights abnormal cardiac cells with irregular and hyperchromatic 
nuclei (indicated by black arrows).

Figure 5. Histological evaluation of cardiac tissue section from 
Group IV (H&E stain). Cardiac tissue section from Group IV (treated 
with 1 mg/kg DAPA) observed under light microscopy (Olympus BX51 
microscope with DP controller software at 40x magnification). The 
section displays normal cardiac cells and nuclei, comparable to the 
control group.
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SGLT2i as a possible mechanism of  action in the prevention of  
cardiovascular disease (CVD) [54]. The anti-hypertrophic effect 
of  DAPA and carvedilol may be attributed to their anti-inflam-
matory properties. This is in line with several studies that report-
ed elevated levels of  circulating inflammatory markers, including 
tumor necrosis factor and IL-6, in hypertrophic cardiomyopathy 
(HCM), supporting the anti-inflammatory role of  these treat-
ments in cardiac health [55,56].

Limitations  

While animal models provide valuable insights into human dis-
eases, they may not entirely replicate human pathologies. The 
study did not include clinical data from human subjects. Al-
though the results in the mouse model are promising, further 
research is needed to determine the safety and efficacy of  inves-
tigated drugs in humans.

CONCLUSION
DAPA had a positive effect on several aging parameters in mice, 
as shown by this study. It decreased the hypertrophy in cardiomy-
ocytes, improved skin vitality, decreased the burden of  inflamma-
tory mediators, and improved the impact of  antioxidants.
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