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ABSTRACT
The kinetic chain refers to the body's intricate coordination of  various segments to perform a specific activity in-
volving precise positioning, timing, and speed. This process is based on task-oriented and activity-specific pre-pro-
grammed muscle activation patterns enhanced by repeated practice. It demands muscular eccentric strength, joint 
flexibility, and musculotendinous elastic energy storage. The body core (lumbopelvic–hip complex) forms the kinetic 
chains’ central point of  activities in most sports because it facilitates load transfers to and from the limbs. The kinetic 
chain relationship with fascia, peripheral nerves, and tensegrity is fundamental to holistic human body movements. 
The kinetic chain function demands neuromuscular, sensorimotor, and neurocognitive control. Any blockage or de-
fect in the kinetic chain can develop compensatory patterns, high demands on distal parts, and overuse and overload 
injuries. Taking a holistic approach and evaluating the integrity of  the kinetic chain in athletes can significantly en-
hance efforts to improve sports performance and mitigate injury risk.
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INTRODUCTION 

The interconnected musculoskeletal kinetic chain is a com-
plex motor unit and the base of  human movements [1, 2]. The 
kinetic chain is the sequenced and coordinated activation of  
body segments that puts the terminal/distal part at the optimal 
timing in the optimal position with the optimal speed to per-
form the required athletic activity [3]. 

The human body's ability to perform complex tasks relies on 
the intricate coordination of  various dynamic systems, the neu-
romuscular and sensorimotor control systems being essential for 
this task [4]. These systems are responsible for processing envi-
ronmental input, employing feedforward [5, 6] and feedback 
loops [7]. The kinetic chain energy transfer across the body is 
a mechanism that engages the neuromuscular coordination of  
the body’s segments, allowing for sequential movements [8]. 
The contribution of  more body segments in the total force out-
put production leads to a higher potential velocity at the distal 
part [8]. Therefore, when the muscle chains are used in ways 
that disturb the parallel agonist/antagonist co-contraction, the 
highly sensory muscle chains can disrupt movements. 

The neurocognitive function integrates and processes visu-
al focus, self-monitoring, agility, dual-tasking, accurate motor 
performance, reaction time, and speed. In the context of  col-

legiate female athletes, lower neurocognitive function has been 
associated with a shift toward dominant muscle activity patterns 
in the quadriceps [9]. This alteration in kinetic chain muscle ac-
tivities can increase the risk of  anterior cruciate ligament (ACL) 
injuries [10].

Kinetic chain, fascia, and neural tissue  

The fascia is a fibrous connective tissue that forms an exten-
sive web-like network throughout the body, supporting the spine 
and facilitating the transfer of  loads between the core and limbs 
[11]. This interconnected network of  fascial tissues significantly 
influences the biomechanics of  the body. Research has shown a 
positive, strong, and significant correlation between the density of  
myofibroblasts and contractile response in these tissues. This sug-
gests that myofascial tissue tension is actively regulated by myofi-
broblasts and has the potential to impact the dynamic functioning 
of  the musculoskeletal system. The influence of  myofascial tissues 
is high enough to potentially affect motoneuronal coordination. 
Myofascial chains explain why muscles in the human body do not 
function as isolated units but instead operate in an interconnected 
manner, forming a systemic and continuous network [12]. A sys-
tematic review concluded that several muscular myofascial chains 
are anatomically strongly evidenced [12]. These integrated myo-
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fascial connections among muscles play a significant role in main-
taining the stability of  the human skeleton [13, 14].

Muscles tend to work synergistically, functioning as bigger an-
atomical interlinked chains [15]. Myofascial chains are distinct 
muscle groups united by the fascial system [12]. The superficial 
back line (one of  the myofascial chains) involves the plantar fascia, 
Achilles tendon, triceps surae, hamstrings, sacrotuberous ligament, 
and erector spinae [16] that can facilitate effective force transmis-
sion between the core and limbs through its anatomical integration 
[17]. The thoracolumbar fascia connects the lower limbs (through 
its attachment with the gluteus maximus) and the upper limbs 
(through its attachment with the latissimus dorsi) [18], permitting 
the core to help in coordinated kinetic chain movements, such as 
throwing [19]. The thoracolumbar fascia attaches to the transverse 
abdominus and internal oblique muscles, offering the lumbar spine 
three-dimensional support and core stability [19]. It forms a stabi-
lizing ‘ring’ surrounding the abdomen, made of  the thoracolum-
bar fascia, the abdominal fascia, and the oblique muscles, acting 
like a stabilizing corset [20]. In addition, the thoracolumbar fascia 
channels load transmissions between the limbs and core [21]. 

In the lower limb, the long head of  the biceps femoris is in conti-
nuity with the sacrotuberous ligament, which in turn is connected 
to the thoracolumbar fascia [11]. Research has shown that when 
the biceps femoris tendon is pulled laterally, it can displace the 
interspinous ligament between the fifth lumbar vertebra and the 
first sacral vertebra, highlighting the load-transferring role of  these 
fascial connections even between distant body areas and joints 
[11]. A dissection study has revealed various continuous fascial 
connections between the pelvis and the feet, including the iliotib-
ial band, femoral intermuscular septa, crural fascia, and crural 
intermuscular septa [22]. These fascial connections can transfer 
loads between the pelvis and the feet [23]. Passive neural tissue can 
also influence the transfer of  load between the pelvis and the low-
er limb [23]. For instance, higher tension in the sciatic and tibial 
nerves was observed when hip flexion and ankle dorsiflexion were 
combined [24]. Similarly, the combination of  hip flexion with the 
knee in an extended position (i.e., long sitting) led to the greatest 
reduction in ankle dorsiflexion [23]. Moreover, knee joint range of  
motion (ROM) is reduced when hip flexion and ankle dorsiflexion 
are combined [25]. Since no single muscular structure passes the 
lower limb joints, non-muscular structures (i.e., fascia and neural 
tissues) can alter/control forces working on distal joint mechanics 
[23]. In a sitting position with trunk rotation, significant differences 
in ankle dorsiflexion ROM can occur due to the tensile force gen-
erated by trunk rotation being transmitted to the contralateral dis-
tal end, thereby altering ankle dorsiflexion ROM [26]. This trans-
mission or propagation of  tensile force is facilitated through the 
myofascial chain and the posterior oblique sling, particularly the 
one connecting the trunk with the contralateral triceps surae [26].

The concept of  integrated kinetic chain asserts that muscular 
chains/pathways are interlinked through soft tissue viscoelastic 
envelopment of  polyarticular myofascial chains. The myofascial 
chains can transfer force, provide sensory and neuromotor input, 
and act like organized muscle synergies. The viscoelastic myofas-
cial chains work within the model of  bio-tensegrity, necessitating 
eccentric function, end-range motions, joint stability, and elastic 
energy storage. In a study published in 2017, the authors utilized 
essential myofascial chain/pathway concepts to provide a compre-
hensive illustration of  how ROM measurements at a single joint 
(specifically, the hip joint) depend on the positioning of  the entire 
body in postures mimicking those encountered during sports activ-
ities, particularly those related to football [27].

Repetitive movements, a common requirement in nearly all 
sports, can impact the fascia surrounding overused muscles, caus-
ing it to shorten and thicken while elongating in other areas [28]. 
Muscles execute movements in kinetic chains, although the muscle 
function is not usually tested in its kinetic chain [29, 30]. Isolat-
ed tests do not examine the movement patterns related to kinetic 
chains [31]. The full functionality of  fascia in a specific chain is 
manifested by permitting all the muscles to activate and hold the 
body in the chain test position [31]. Myofascial chain restrictions 
are manifested as the inability to hold the position and/or discom-
fort in keeping the position [31]. 

Kinetic chain and bio-tensegrity 

Human movement is multisystemic and complex [1]. Under-
standing how these systems interact in human movement can 
enhance our understanding of  injury causes, prevention, and 
rehabilitation [1]. This perspective views human movement as 
a holistic, interconnected, complex system rooted in bio-tenseg-
rity [1]. Bio-tensegrity is a concept where the bones are joined/
linked with multiple viscoelastic myofascial chains with mus-
cle tone maintained in a tension-dependent manner [1]. The 
tensegrity concept can explain how the human kinetic chain is 
interconnected and interdependent [13, 17]. Tensegrity con-
cepts regard the musculoskeletal system as a series of  elements 
that resist compression (i.e., the bones) and are interconnected 
by a continuous network of  viscoelastic elements (i.e., the mus-
culotendinous system), which provides constant elastic tension 
within the system, both at rest and during movement [13, 32, 
33]. The design of  the bio-tensegrity system is evident in the 
continuous adjustments made by the entire musculoskeletal sys-
tem, creating global patterns during movements [1]. The visco-
elastic myofascial muscle chains function within a bio-tensegrity 
design that emphasizes the importance of  addressing human 
movement holistically [1]. The influence of  whole-body posi-
tioning on the range of  motion of  a single joint illustrates the 
kinetic chain's function through the myofascial muscle chain [1].

The kinetic chain and the core  

The core (lumbopelvic–hip complex) forms the kinetic chains’ 
central point of  activities in most sports and is essential in injury 
risk mitigation [18]. Core stability is the capability to control 
the trunk alignment and movement over the pelvis and lower 
limbs to permit optimal force and motion generation, transfer, 
and control to the distal part in an integrated kinetic chain [18]. 
Therefore, core stability is crucial to enhance athletic function 
efficiency by maximizing the function of  the upper and lower 
limbs’ kinetic chains. 

The kinetic chain involves the sequential activation of  muscles 
while performing a specific task, relying on pre-programmed 
patterns of  muscle activation that are enhanced by repetition 
[18]. Muscle activation patterns associated with fast upper-limb 
movement reveal that the contralateral gastrocnemius/sole-
us are activated first [34], and then the activation reaches up 
(through the core) to the arm [35]. In baseball throwing, the 
muscle activation for pitching starts from the contralateral exter-
nal oblique and continues up to the upper limb [35]. 

The trunk/core muscle activation patterns enhance the mus-
cle activation patterns of  the limbs in both stability and mobility, 
while the distal muscle activity tends to be more specialized for 
precision tasks [18]. Core muscle activation is pivotal in gener-
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proximal-to-distal energy flow from the trunk to the lower limb 
to execute angular motions to contact the ball. The strategies 
involved in whole-body energy transfer during instep kicking in-
clude energy absorption by the support limb, the formation of  
an eccentric 'tension arc' between the torso and kicking hip, and 
its concentric release, along with proximal-to-distal sequencing 
of  the kicking limb during the downswing [49]. In maximal in-
step soccer kicking, skilled athletes exhibited greater trunk rota-
tion range of  motion and speed, resulting in higher ball velocity 
compared to novice athletes [50].

For baseball pitching to occur, a complex muscle activation se-
quence along the kinetic chain generates and efficiently transfers 
the required energy for executing a baseball throw [51]. The ki-
netic chain influences the activation of  the scapular musculature 
(serratus anterior) throughout the practice of  knee push-up-plus 
exercises. Electromyography studies have demonstrated that 
ipsilateral lower-limb extension amplifies the activation of  the 
serratus anterior, whereas contralateral lower-limb extension re-
duces its activation [52]. Consciously contracting the abdominal 
muscles was an effective strategy to magnify the serratus anterior 
and lower trapezius activity (as proven by the electromyographi-
cal readings) during the push-up plus phase [53]. 

Efficient energy transfers involve the sequential transfer of  
energy from the larger and more proximal parts of  the body to 
the smaller terminal parts [49]. Efficient energy transfers along 
the kinetic chain were linked to a lower risk of  injury and higher 
performance [49] because a synchronized kinetic chain can re-
duce joint loads, enhance velocity, and increase force production 
throughout the motion [54]. Higher-level players use shoulder 
and wrist power better by effectively engaging the entire body 
kinetic chain [55]. This power generation process during throw-
ing starts in the lower limbs and core, where large and powerful 
muscles are located [56]. Around half  of  the force production 
throughout the throwing motion occurs in the hip and trunk 
[51]. The lower-limb-generated force is transferred through the 
trunk to the scapula of  the throwing/accelerating arm [51]. Mo-
bility restriction and kinematics alteration in the hip and trunk 
are linked to a throwing mechanics breakdown (loss of  energy 
production) and shoulder and elbow injuries [57, 58]. The mo-
bility restriction causes a loss of  energy production and conse-
quent larger force production role on the arm, placing abnormal 
and damaging stresses on the soft tissues [51, 59, 60].

Kinetic chain and sports injuries   

Sports injuries are complex phenomena due to the interplay of  
various risk factors or predictors (known as the risk profile) that 
can lead to compensatory patterns and eventual injuries [7]. The 
ability to predict and prevent sports injury depends on identifying 
these risk patterns (risk profile) through a non-linear and complex 
system approach [7]. In the kinetic chain, disruptions at proximal 
links can increase demands on more distal segments, requiring 
enhanced functional abilities in those areas and making them 
more susceptible to injuries [39, 61, 62]. 

Deficits in the kinetic chain links in the trunk and lower limbs 
were present in approximately 50% of  cases involving injuries to 
the superior glenohumeral labrum anterior and posterior regions 
in throwing shoulders [57]. In individuals with chronic ankle in-
stability, changes in ankle-joint kinetics, including a decrease in 
ankle-eversion moment and an increase in ankle plantar-flexion 
moment, were observed during side-cutting task performance. 
Additionally, increased hip joint stiffness was observed [63]. Such 

ating rotational torques around the spine, typically initiating on 
the contralateral side to produce force and rotational movement 
[35, 36]. Furthermore, core muscle activation provides stiffness 
to the torso, forming a base against which limb musculature can 
be stabilized while contracting [20, 36].

Core proximal activation is essential for facilitating coordinat-
ed movements of  distal segments [18]. Core proximal activation 
provides the precision and stability for the whip-cracking-like 
upper extremity distal segment maximal force (e.g., when throw-
ing a ball, the core muscles stabilize the trunk to give the need-
ed base for the arm to throw the ball with force and precision). 
The upper extremity distal part is smaller than the proximal part 
and, therefore, has a minimal moment of  inertia, which allows 
higher velocity summation. Consequently, the combination of  
core activation and hand minimal moment of  inertia can allow 
the ball to be thrown with high precision, power, and acceler-
ation [18]. The core also helps control force. In kicking, max-
imum force at the foot is generated by the propagated moment 
after the hip joint flexion [3]. The periscapular and core mus-
cle activation represents almost 85% of  the muscle activation 
needed to control the forward-moving upper limb [37]. It was 
found that tennis players with lower knee flexion ROM during 
the back-swing phase of  the serve action had 23–27% greater 
shoulder rotation, horizontal adduction stress, and elbow valgus 
stress [38]. The possible explanation was that the lower knee 
flexion ROM caused breakage in the kinetic chain and less con-
tribution from the hip and core [38].

Kinetic chain and sports performance  

Sports performance depends on relevant kinematic and kinet-
ical variables [39]. Sports performance improvement is correlat-
ed with injury prevention [39]. The kinetic chain refers to the 
sequential activation of  task-specific body segments, enabling 
efficient generation, summation, and transfer of  mechanical en-
ergy to support functional movement patterns [40, 41]. Kinetic 
chain inefficiency occurs when there is a defect or disruption at 
any point within the chain, which affects the transfer of  energy 
or force to nearby segments [40, 41]. The defect in the kinetic 
chain places additional demands on the remaining segments of  
the chain to compensate for the energy loss [40]. This compen-
sation has been identified as a contributing factor that increases 
the risk of  shoulder pain and injury during overhead sports ac-
tivities [40, 42]. In the dominant tasks of  the upper extremity, 
the energy generation and production are in a proximal-to-dis-
tal sequenced pattern [43]. For example, during a tennis serve, 
approximately 50%–55% of  the total required kinetic energy 
is generated from the legs and trunk [41, 44]. In elite handball 
players, the main determinant of  the throwing velocity is the 
lower-limb peak power [45]. Moreover, lower limb peak power 
was strongly correlated with the sprint-swim speed in freestyle 
swimmers [46]. Furthermore, lower limb musculature mass and 
contraction velocity correlate significantly with the performance 
of  javelin throwing [47].

The muscle activation sequence in striking and throwing skills 
follows a proximal-to-distal direction. The "tension arc" travels 
along the body from the contralateral arm on the non-kick-
ing side to the kicking leg as it extends and abducts, resulting 
in trunk rotation [48]. The forward movement of  the kicking 
limb and the contralateral arm releases this tension arc, allow-
ing it to shorten and demonstrate the stretch-shortening cycle 
[48]. For kicking to happen, the trunk generates a sequential 
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strength of  serratus anterior and moderately with that of  triceps 
brachii [73].

The Bunkie test  

The Bunkie test examines kinetic chains across the fascia and 
detects the apparent restrictions in the kinetic chains along the fas-
cia lines [31]. Mayer's anatomy trains serve as the foundation for 
the kinetic chains employed in this test [29]. Each kinetic chain is 
associated with a particular testing position, with both the right 
and left sides of  the body being evaluated. Participants are re-
quired to maintain the testing position for 40 seconds. There is 
a significant correlation between performance constructs (agility, 
speed, explosive power, and muscle endurance) and performance 
in the Bunkie test in healthy rugby players [31].

Closed kinetic chain dynamic lower extremity stability 
(CKCLE) (developed by Lee, Hwang, Jung, Ahn, and Kwon, 
2020)  

The closed kinetic chain dynamic lower extremity stability (CK-
CLE) test is a novel test examining the functional performance 
and assessing antigravity posterolateral hip musculature function. 
During this test, individuals are instructed to lift one foot, touch 
it to the opposite knee, and then lower it back to the floor while 
isometrically maintaining the bridging position. This motion is re-
peated for 20 seconds, and the score is based on the number of  
touches achieved in that time frame. There is a positive and signifi-
cant correlation between the strength of  the supporting lower-limb 
hip extensors, abductors, and external rotators and the number of  
foot touches completed in 20 seconds [74].

Closed kinetic chain lower extremity stability test 
(CKCLEST) (developed by Arikan, Maras, Akaras, Citaker, 
and Kafa, 2021)  

The closed kinetic chain lower extremity stability test (CK-
CLEST) is a novel, easy, and cost-effective performance-based 

altered lower-limb kinetics and movement patterns may increase 
the risk of  recurrent lateral ankle sprains [63]. Soccer players 
were eight times more prone to hamstring strain injury if  their 
hamstring muscles were activated after the lumbar erector spinae 
(normally, the hamstring is to be activated before the erector spi-
nae) during prone hip extension (mid-range and end-range) [64]. 

The kinetic chain concept implies that the disorder of  a joint 
can precipitate injuries to other joints (usually distal to the joint 
involved) [65]. Athletes who are landing with altered lower-limb 
mechanics (with dynamic knee valgus, tibia internal rotation, and 
pronated feet) have a high risk of  sustaining acute ACL non-con-
tact injury [66] and anterior knee pain as overuse injury [65, 67, 
68]. In alpine skiers, tibia internal rotation with a knee full exten-
sion or flexion beyond 90° was linked to a non-contact ACL in-
jury [66]. More proximally, impaired trunk control, motion, and 
body-weight shift on the lower limb were linked to a high risk of  
ACL non-contact injuries [66]. 

Kinetic chain-related clinical tests 

The closed kinetic chain upper extremity stability test 
(CKCUES test)/ Davis test  

The closed kinetic chain upper extremity stability test (CKCUES 
test) is a valuable, cost-effective clinical tool for evaluating shoulder 
performance [69]. It provides quantitative data for assessing upper 
extremity function in a closed kinetic chain context [54]. This test 
targets explicitly the stability of  the scapular muscles, making it 
useful for evaluating scapular stability [70]. Furthermore, it deter-
mines the upper limb function, progression in rehabilitation, and 
return-to-sport judgment [71]. The CKCUES test shows strong 
reliability and validity [71] and is designed to be user-friendly for 
clinicians, making it easy to administer and comprehend [72]. The 
test score is determined by counting the number of  times the indi-
vidual, while in a plank position, is touched by their swinging hand 
and supporting hand [72]. Its performance strongly correlates with 
the isokinetic strength of  shoulder flexors and elbow extensors at 
180°/s for men [71]. It is strongly associated with the isometric 

Figure 1. Summary of kinetic chain implications and elements related to injury and sports performance
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