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Abstract:  

 The paper discusses the connection between emergence, pattern formation and nonlinear dynamics, focusing on the 
similarity between discrete patterns and fractal structures, and then describes different solutions to model reaction-diffusion systems 
as representative processes in morphogenesis. A specific example is the diffusion limited aggregation growth process, illustrated by 
the simulation of the evolution of a bacterial colony that shows the roles of instability and sensitivity in non-equilibrium pattern 
formation. Based on this particular case, it is shown how self-organization could be achieved from non-organized agglomeration of 
separate entities, in a region of space. We conclude with some brief remarks about universality, predictability and long-term 
prospects for this field of research. 

 
K e y  w o r d s :  e m e r g e n c e ,  s e l f - o r g a n i z a t i o n ,  m o r p h o g e n e s i s ,  p a t t e r n  f o r m a t i o n ,   

r e a c t i o n - d i f f u s i o n  s y s t e m s ,  f r a c t a l  a n a l y s i s .  

1. Introduction 

Our approach deals essentially with pattern 
formation in biological systems far from equilibrium state, 
trying to underline a connection between the general 
principles of morphogenesis, the dynamics of the 
reaction-diffusion systems and the fractal analysis as a 
tool for modeling such processes.  

What makes the present stage of biological 
science so extraordinary is that molecular biology is 
driving us to the innermost reaches of the cell's ultimate 
mechanisms, complexity, and capacity to evolve. At the 
very same time, work in Mathematics, Physics, 
Chemistry, and Biology is revealing how far- reaching the 
powers of self-organization can be. These advances hold 
implications for the origin of life itself and for the origins of 
order in the ontogeny of each organism. The order 
inherent in the busy complexity within the cell may be 
largely self-organized and spontaneous rather than the 
consequence of natural selection alone. 

The variety of natural patterns makes it difficult 
to analyze and compare them in a systematic manner. 
We address this problem by focusing on the 
computational aspects of pattern formation processes. 
They are characterized in terms of the number of 
morphogenetic agents, the computing capability of each 
agent, and the forms of information transfer between the 
agents and their environment. This computational 

analysis can be applied to a wide range of patterns. It 
highlights the fundamental, algorithmic similarities 
between processes that may be implemented by using 
different physical or physiological mechanisms in nature. 
It also confirms earlier observations that fundamentally 
different processes can create similar or identical 
patterns. The tradeoffs between computational 
characteristics of these processes lend themselves to a 
formal analysis, which could lead to the formulation of a 
"computational theory of morphogenesis" based on the 
theory of algorithms. 

2. A conceptual approach for emergence 

Emergence is a fundamental property of 
complex systems and can be thought of as a new 
property or behavior, which appears due to non-linear 
interactions within the system; emergence may be 
considered the ‘product’ or by-product of the system. As 
our world becomes increasingly more interconnected, 
understanding how emergence arises and how to design 
for it and manage specific types of emergence is ever 
more important. To date, the concept of emergence has 
been mainly used as an explanatory framework [10], to 
inform the logic of action research [14] or as a means of 
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exploring the range of emergent potential of simulation of 
real complex systems [1]. 

The ability of current models to fully portray 
emergence in all its possibilities has been questioned,   
but current conceptual models of emergence (for example 
[6]) are too simplistic or general to be useful when 
examining the range of types of emergent phenomena 
observed in real physical, biological and social systems. 
Improved understanding and modeling of emergence is 
required. Through its nature, emergence is problematic to 
the model. It is the product of interconnections and the 
interaction makes it dynamic and unpredictable; entities, 
interactions, their environment and time are key 
contributors to emergence, even though there is no 
simple relationship between them. For example, self-
organization, while linked with the appearance of 
hierarchical structures and system wide properties does 
not account for the emergence of true novelty or 
semantics and meaning. Are there underlying 
generalizations that can be drawn from the occurrences of 
different types of emergence, which can be applied to real 
systems? This is after all one of the underlying principles 
of Complexity Science. Another poorly understood issue 
is how emergent properties or dynamics appear to 
influence the behavior of the constituent entities of the 
system. A new model approach was adopted because it 
allowed a useful representation of salient features 
pertaining to the issues under investigation. Such a model 
does not necessarily have the explanatory power of 
formal models; it rather provides a working strategy, a 
scheme containing general, major concepts and their 
interrelations.  

In order to underline the connection between 
emergence and self-organization, one can discuss the 
features of the four meta-classes –first introduced in 
McDonald and Weir (2005) [15]. Features were 
considered potential meta-classes if (i) they were the 
product of non-linear interactions (ii) they were domain 
independent (iii) they were a core building block for 
system interactions and (iv) they open up new system 
potential by their existence. Self-organization, where 
detailed organizational structure and new system 
interactions emerge as a result of the behavior rules of 
the system entities, is a well documented feature of real 
complex systems. The term self-organization is varyingly 
used to describe the dynamics of complex systems, 
emergence or the specific organizational changes brought 
about through the autonomous entity behavior. The term 
self-organization is defined as the structural change in a 
complex system that arises from nonlinear, possibly noisy 
interaction. Because this structural change is a collection 
of parts with ordered asymmetric relationships, we class it 
as hierarchy. The concept of hierarchy again is well 
documented, frequently acting to constrain the degrees of 
freedom of a complex system. 

As Kauffman observes, some emergence 
fundamentally changes the complex system in which it 

appears [12]. Therefore, we define novelty as the 
emergence of a sustainable new entity with distinctly 
different interaction patterns. For Pattee, the role of 
memory is crucial in biological systems – “evolution 
depends, at least to some degree, on control of dynamics 
by rate-independent memory structures” [17]. These 
memories must first appear before the complex systems 
and may capitalize on them. Therefore, we define the 
memory meta-class as frozen structure or processes that 
arise through non-linear interactions. Biological life relies 
on synergistic coupling, which happens in nature through 
an entity’s ability to sample its environment and make use 
of synergistic opportunities – it uses other entities or 
processes within the system to do work. This is an 
example of what we call the emergence of functionality, in 
which a new process that carries out „work” used by 
another entity emerges. Before entities can make use of 
other entities or processes in this synergistic way, they 
must be able to detect their existence. When a new ability 
for environment sampling arises through interaction, we 
define that the emergence of measurement. Related to 
the emergence of memory it is the issue of its accessibility 
to the various entities of the complex system. When the 
non-linear interactions cause this memory or processes 
within the system to be restricted to certain parts, we 
describe it as localization. If the localized memory or 
processes are used differently within the system, then the 
context is said to have emerged. The ability of the entities 
is to recognize patterns that trigger specific behavior, 
although the original causal pattern may be lost. That 
significantly adds to the creativity of complex systems. We 
call this symbolism. 

Other concepts such as autocatalysis, 
reproduction, evolution, dissipative systems and 
autopoiesis, are not detailed because these are 
specialized forms of processes that emerge and therefore 
are included under function / process. 

3. Paradigms of pattern formation 

3.1. Definitions and classifications 
First, let us accept a discussion only on discrete 

patterns, which are structures, based on repetitive 
occurrences of predefined figures, called motifs. A pattern 
is assumed invariant with respect to some isometries of 
the plane, called its symmetries. The act of setting all the 
symmetries forms a group under composition; in 
particular, fractal structures can be assimilated as discrete 
patterns.  

Fractal patterns abound in the natural world and 
include, to name but a few examples for which 
mathematical models have been proposed, branching 
patterns of plants and rivers, venation patterns in leaves, 
arrangements of cells in organs of plants and animals, 
pigmentation patterns in sea shells and buttery wings or 
animal coat patterns.  
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Stevens distinguished four prototypical classes 
of patterns (see Figure1: a) spirals, b) meanders, c) 
explosions, d) branching patterns) by considering different 
methods of connecting a set of regularly arranged points 
into a graph without cycles [20]. 

 
 
 
 
 
 
 
 

 
 
 
 

Patterns in each class were characterized by 
geometric attributes: uniformity, space filling, overall 
length of lines, and directness of lines. This 
characterization proved useful when analyzing natural 
patterns from the viewpoint of their optimality. 
Unfortunately, the optimality of the result does not offer a 
direct insight into the mechanisms that govern pattern 
formation. A classification that addressed this limitation 
was suggested by Bell, who distinguished the following 
three categories of branching patterns [2]:  

 Blind patterns, in which branch initiation is 
controlled solely by the imposed program rules, that is 
without the “organism”' and its environment. 

 Sighted patterns, in which the initiation of a 
new branch is influenced by factors detected by it in the 
immediate neighborhood, such as proximity of other 
organisms, or parts of the same organism. 

 Self-regulatory patterns, in which the 
developing simulation itself controls branch initiation, 
using communication via components of the existing 
framework, whether or not affected by environmental 
factors. 

Focusing on the fundamental, algorithmic 
properties of pattern formation, the above classification 
makes it possible to recognize and analyze similarities 
between apparently different realizations of similar 
patterns, and does not presuppose any computational 
framework for model construction. However, one of these 
models seems the most suitable to simulate pattern 
formation. It is the model of a reaction-diffusion systems, 
which is in the same time the most appropriate to 
describe the construction of a fractal structure [18].  

 
3.2. Bifurcations in pattern formation 

After instability has produced a growing 
disturbance in a spatially uniform system, the next crucial 
step in the pattern-forming process must be some 
intrinsically nonlinear mechanism by which the system 
moves toward a new state. That state may resemble the 
unstable deformation of the original state. The system 

evolves in entirely new directions as determined by 
nonlinear dynamics. We now understand that it is here, in 
the nonlinear phase of the process, that the greatest 
scientific challenges arise. The inherent difficulty of the 
pattern-selection problem is a direct consequence of the 
underlying (linear or nonlinear) instabilities of the systems 
in which these phenomena occur. A system that is linearly 
unstable is one for which some response function 
diverges. This means that pattern-forming behavior is 
likely to be extremely sensitive to small perturbations or 
small changes in system parameters. Therefore, some 
important questions are: Which perturbations and 
parameters are the sensitively controlling ones? What are 
the mechanisms by which those small effects govern the 
dynamics of pattern formation? What are the interrelations 
between physics at different length scales in pattern-
forming systems?  

Let us now present a possible strategy to answer 
these questions. In dynamical systems theory, the stable 
steady solutions of the equations of motion are known as 
‘‘stable fixed points’’ or ‘‘attractors,’’ and the set of points 
in the phase space from which trajectories flow to a given 
fixed point is its ‘‘basin of attraction.’’ As the control 
parameters are varied, the system typically passes 
through ‘‘bifurcations’’ in which a fixed point loses its 
stability and, at the same time, one or more new stable 
attractors appear. An especially simple example is the 
‘‘pitchfork’’ bifurcation at which a stable fixed point 
representing a steady fluid flow, for example, gives rise to 
two symmetry-related fixed points describing cellular flows 
with opposite polarity.  

The theory of bifurcations in dynamical systems 
helps us understand why it is sometimes reasonable to 
describe a system with infinitely many degrees of freedom 
using only a finite (or even relatively small) number of 
dynamical variables. It is for this reason that we may need 
only a low-dimensional space of dynamical variables to 
describe some pattern-formation problems near their 
thresholds of instability — a remarkable physical result. 

4. Modeling reaction-diffusion systems 

 
4.1. The starting point 

Qualitative studies of reaction diffusion systems 
of equations have probably begun in 1952. The reason is 
that two paradoxes of diffusion were demonstrated by 
nonlinear differential equations in the same year-1952. 
The first was shown by a mathematician, A. Turing, who 
is well known as a great pioneer in the field of computer 
science. He suggested, by using a simple reaction-
diffusion (RD) system, a paradox that diffusion enhances 
spatial in-homogeneity, although we know, as common 
sense, that diffusion does enhance homogeneity in space 
[21]. He also claimed that such “diffusion-induced 
instability” gave the possibility to play a role in the 
mechanism of cell differentiation and morphogenesis 

Fig. 1 Typical patterns proposed by Stevens 
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arising in the field of developmental biology. Two 
neurophysiologists, A. L. Hodgkin and A. F. Huxley, who 
investigated the mechanism of impulses propagating 
along nerve fiber [8], suggested the second one. One of 
the physiological problems was to clarify the reason why 
nerve impulse constantly propagates with fixed shape. In 
the same year Turing’ paradox was stated, they proposed 
a model of nonlinear partial differential equations, which is 
given by the coupling of a single RD equation with three 
ODEs in order to describe the propagation of impulses 
along the fiber. [16] Unfortunately, it was so hard to 
analyze their model at that time, because it contains high 
nonlinearity. However, their model could be numerically 
solved by using computer calculation. It is surprising that 
this model generates a traveling pulse wave with constant 
shape as well as velocity, in spite that it is described by 
diffusion equations. This indicates another paradoxical 
evidence of diffusion, that is, suitable RD systems 
possibly generate a localized wave. 

Since 1952, RD systems have had the form: 
)(uFuDut                             (1) 

They have been intensively investigated in the 
fields of not only applied science such as Biology, 
Chemistry, Physics but also in Mathematics. In a general 
case, equ. (1) models the diffusion through a domain 

k of m interacting species or chemicals, where 
the i-th component ui of u = (u1,…, um) represents the 
density or concentration of the i-th reactants and D = (d1, 
…, dm) is the matrix of the diffusion constants di > 0 [9]. 
One hard mathematical task for the practical use of these 
models is to find the appropriate vector supply terms F in 
such a way that the pattern formation process, governed 
by the corresponding reaction-diffusion system, coincides 
with the phenomenon observed in the laboratory 
experiments or in nature.  

Because the pattern formation process is the 
main subject in question, we can ask if the complexity of 
patterns modeled by the reaction-diffusion systems can 
be arbitrary. A pattern is the eventual result of a time 
evolution of a biological, chemical, or physical process 
and thus has the following two main features: a) Long-
time effect and b) Great randomness of the initial 
conditions. Based on this observation, we saw that a 
pattern is a kind of attractor. By an attractor for a reaction-
diffusion system we mean the mathematical object, which 
attracts an open set of initial data in such a way, that the 
trajectories starting from this initial data set eventually, 
end up on the attractor in question (this is just the long-
time effect of an attractor). The openness of the set of 
initial data guarantees the required great randomness of 
initial data, which lead to the same pattern (attractor). 
Moreover, this openness corresponds to the practical 
need (i.e., for the computer simulation) that there is a 
positive probability that computed trajectories will tend to 
the attractor. Using the concept of attractors, well known 
in fractal analysis, the above universality problem can be 
mathematically more exactly reformulated as it follows: 

Can the complexity of attractors for the reaction-diffusion 
systems be arbitrary? 

Further, we will give a method of constructing the 
vector supply term F for the purpose that the 
corresponding reaction-diffusion system has an attractor, 
whose complexity can be arbitrary in some sense.  

 
4.2. Model construction 

Let n and nK   be a given connected 
compact subset of arbitrary complexity. Then there is a 
vector supply term FK of the form: 

))()((),(  fvAvFK    (2) 

for   and nv  ,  where A is a smooth 

function on   and f a smooth map on n , such that the 
corresponding reaction-diffusion system 

0,),(  txuFuDu kt   (3) 

of n+1 components u=(φ,v), accompanying with 
the zero flux boundary condition, generates a dynamical 
system in the state space C(Ω)1+n with the following 
properties: 

(i) For each initial value u0 C(Ω)1+n the 
reaction-diffusion system (3) has a global unique solution 
u, u(0) = u0, such that u is continuous in Ωx[0, ), and ut, 
Δu as well as all partial derivatives are continuous in 
Ωx(0, ). 

(ii) Each solution u of the reaction-diffusion 
system (3) starting from an initial value u0=(φ0,v0) 
C(Ω)1+n such that either φ0>0 or φ0<0 is asymptotically 
stable and converges to the set KK  }0{  in the sense 
that ω(u,C) =K . As result, the connected compact set K  
is an attractor for the reaction-diffusion system (3) settled 
in the state space C(Ω)1+n. 

Here we chose the zero flux boundary condition 
and the positive initial condition, since they are probably 
the most interesting boundary and initial conditions in the 
biological or chemical situation. Namely, the zero flux 
boundary condition reflects the self-organization 
mechanism of pattern while the positive initial condition 
restricts the pattern formation process to such a beginning 
circumstance that each of the reactants has a positive 
distribution all over the reaction domain. Thus, our 
statements imply that any pattern (hereK ) which is 
isomorphic to a connected compact subset (here K) of the 
Euclidean space n can be seen as the final result of the 
pattern formation process governed by some appropriate 
reaction-diffusion system of n + 1 components. Moreover, 
it implies the following assertion: The make-up of a 
pattern nKK  with arbitrary complexity (i.e., a 
fractal pattern [4] can be realized by a reaction-diffusion 
system of the form (3) once the vector supply term FK has 
been previously properly constructed. 
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4.3. A model of the dendritic pattern formation 
process 

Although the above construction is the product of 
theoretic thoughts, we were also interested in whether it is 
possible to derive such reaction-diffusion systems from 
any sequence of reasonable biochemical or physical 
situations, where one can consider that the first 
component φ of the vector u=(φ,v) works as the activator 
and the rest components v as the inhibitor of the system). 
This mechanism simplicity throws light on the possibility of 
deriving reaction-diffusion systems of the form (3) from 
real world situations. One of these particular real world 
examples is the process of diffusion-limited aggregation 
(DLA) encountered in dendritic pattern formation [7]. 

The dendritic pattern formation process can be 
observed in different areas of non-equilibrium pattern 
formation: Metallurgy (dendritic solidification), Medicine 
(tumor growth), Biology (bacterial colony development) 
and so on. In the most common situations, dendritic 
growth is controlled by diffusion—either the diffusion of 
latent heat away from the growing solidification front or 
the diffusion of chemical constituents toward and away 
from that front. These diffusion effects very often lead to 
shape instabilities; small bumps grow out into fingers 
because, like lightning rods, they concentrate the diffusive 
fluxes ahead of them and therefore grow out more rapidly 
than a flat surface. Today’s prevailing theory of free 
dendrites is generally known as the ‘‘solvability theory’’ 
because it relates the determination of dendritic behavior 
to the question of whether or not there is a sensible 
solution for a certain diffusion-related equation that 
contains a singular perturbation. The term ‘‘singular’’ 
means that the perturbation completely changes the 
mathematical nature of the problem whenever it appears, 
no matter how infinitesimally weak it might be. In the 
language of dynamical systems, the perturbation controls 
whether or not there is a stable fixed point. Similar 
situations occur in fluid dynamics, for example, in the 
‘‘viscous fingering’’ problem [13]. The theory has been 
checked in numerical studies that have probed its 
nontrivial mathematical aspects [11]. As a result, although 
we know that there must be other cases (competing 
thermal and chemical effects, for example), we now have 
reason to confide that we understand at least some of the 
basic principles seen in fluids and granular materials 
correctly. The degree to which we can develop 
quantitative, predictive models of these phenomena will 
determine the degree to which we can control them and 
perhaps develop entirely new technologies. As an 
example, in the next section of the paper we will discuss a 
simulation of the dynamics of a predictive model of 
pattern forming in a biologic system.  

This simulation model tries to reflect the real 
behavior of cells observed microscopically.  Looking 
through the microscope at colonies of a certain T 
morphotype [3], one can see cells performing a random-
walk-like movement in a fluid. We assume that this 

lubrication fluid is excreted by the cells and/or drawn by 
the cells from the agar culture medium. The cellular 
movement is confined to this fluid; isolated cells spotted 
on the agar surface do not move. A closer look at an 
individual branch (figure 2) reveals a phenomenon of 
density variations within the branches. These 3-
dimensional structures arise from accumulation of cells in 
layers. The aggregates can form spots and ridges which 
are either scattered randomly, ordered in rows, or 
organized in a leaf-veins-like structure. The aggregates 
are not frozen; the cells in them are motile and the 
aggregates are dynamically maintained. The picture 
shows variation in the height of the branches. The more 
bacteria are in a unit area, the more layers the bacteria 
are in, and the higher the area seems. Thus, the 
boundary of the fluid defines a local boundary for the 
branch. Whenever the cells are active, the boundary 
propagates slowly as a result of the cellular movement 
pushing the envelope forward and due to the production 
of additional wetting fluid. Electron microscope 
observations reveal that these bacteria have flagella for 
swimming. The observations also reveal that the cells are 
active at the outer parts of the colony, while closer to the 
center, the cells are stationary and some of them 
sporulate. It is known that certain bacteria respond to 
adverse growth conditions by entering a spore stage until 
more favorable growth conditions return. Such spores are 
metabolically inert and exhibit a marked resistance to the 
lethal effects of heat, drying, freezing, deleterious 
chemicals, and radiation.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Model implementation and simulation 
results 

5.1. Model design 
We can gain much insight into instability 

mechanisms and nonlinear states from the continuous 
models of biological processes. Often, though, it is more 
convenient to compute with discrete “automata” models, 
which in some sense are designed to be simulated. In 
fact, we will see that perhaps the most convenient 

Fig. 2 Structure of ordered aggregates within branches (a) 
microscopic view; b) simulated growth).  
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approach for microbial systems seems to be a 
hybridization of continuum and atomistic methods. Let us 
start with systems exhibiting diffusive instabilities. Initially, 
the simplest discrete analogue was afforded by diffusion-
limited-aggregation (DLA). Here, discrete walkers move 
diffusely in space and attach to a growing cluster. In the 
limit of taking one walker at a time (i.e. of extremely slow 
growth) and purely irreversible attachment at any nearest-
neighbor site, one obtains the classic DLA fractal [22]. It is 
well worth emphasizing the beneficial aspects of having a 
connection between a discrete simulation and a related 
continuum model. It is usually difficult to do much beyond 
simulation for a discrete model; so, having a continuum 
analogue allows an analysis that helps guide the 
simulations and vice versa. Once the basics are 
understood, one can modify the simulation to encompass 
more details of the actual system and thereby obtain 
results that are more reliable. But, just doing the 
simulations or even the analysis is insufficient; one must 
understand the fundamental mechanisms at the core of 
an observed simulated structure as these can then be 
compared to the true underlying biological dynamics. 

Aside from computational convenience, there are 
good reasons why the modeling of biological systems can 
make good use of discrete entities. First, the numbers 
match more closely. Perhaps more importantly, cells 
contain large numbers of internal degrees of freedom, 
which modulate their response to external signals from 
other cells. Hence, describing a population of cells with 
something as non-informative as a density field is usually 
insufficient. At the very least, one would have to introduce 
either new variables or even new coordinates. Tracking 
cells as individual objects makes it easy to do this; we just 
attach extra labels to the cell and postulate transition rules 
as to how these labels change in time. This flexibility is 
quite useful and hence some of the models to be 
discussed keep cells discrete. At the same time, though, 
continuum analysis is used to shed light on the 
simulations and forms an indispensable part of an 
integrated effort to understand microbiological pattern 
formation. 

The Discrete Walkers (DW) model describes the 
growth of colonies of T morphotype. The model was 
inspired by the diffusion-transition scheme proposed by 
Cohen in his Ph.D. thesis [3]. This scheme is a 
hybridization of the “continuous” and “discrete” 
approaches used in the study of non-living systems. In the 
DW model, discrete walkers that obey dynamic rules 
represent the bacterial cells. The DW model also consists 
of at least one chemical field, namely nutrient 
concentration field, and additional element such as a free 
boundary of the colony. A walker in the DW model does 
not represent a single bacterium. Each of the walkers will 
usually be taken to represent about one hundred cells. 
Each of the walkers has a position ri and a metabolic state 
Hi. The lubrication fluid is not incorporated as such into 
the model, only its effects on the bacterial movement. The 

area occupied by the colony (wetted by the lubrication 
fluid) is defined by an on-lattice boundary representing the 
boundaries of the layer of lubrication fluid. To incorporate 
the swimming of the bacteria into the model, the walkers 
perform an off-lattice random walk within the area already 
occupied by the colony. At each time-step each of the 
active walkers attempts to move from its location a step of 
size d at a random angle θ(θ chosen from [0;2π] with 
uniform distribution), to a new location r’given by: 
r’=r+dcosθ. Although d is used in this equation as if it has 
length units, its units are actually the square root of the 
units of a diffusion coefficient. These units compensate for 
fact that the number of steps of a walker per time unit is 
sensitive to the time-step of the model’s simulation. If the 
units of d would have been length units, then the effective 
diffusion coefficient of the walkers in the bulk of the colony 
would have been sensitive to the time-step of the model’s 
simulation. If the new location r’ is outside the boundary, 
the walker does not perform that step, and a counter on 
the segment of the boundary which would have been 
crossed by the movement from r to r’ is increased by one. 
When the segment counter reaches a pre-specified 
number of hits Nc, the boundary propagates one lattice 
step and an additional lattice cell is added to the area 
occupied by the colony. Nc is measured in units of length 
to the power of -D (where D is the spatial dimension of the 
simulation: 2 or 3). The requirement of Nc hits represents 
the colony propagation through collective production of 
lubrication fluid and wetting of unoccupied areas. Nc is 
directly related to the food concentration, as more 
lubrication fluid has to be produced to push the boundary 
on a drier substrate. 

We represent the metabolic state of the i-th 
walker by an “internal energy” Hi. The dynamics of this 
energy is given by  

r

m
c

i E
cn

dt

dH


  

where c is a conversion factor from nutrient to 
internal energy and Em represents the total energy loss for 
all processes (excluding reproduction) over the minimal 
time of reproduction τr. The nutrient consumption rate nc is 

),min( '
nncn  , where Ωn is the maximal rate of nutrient 

consumption of a walker, and Ω’n is the rate of nutrient 
consumption as limited by the local availability of nutrient. 
The maximal rate of nutrient consumption of a walker 
equals the consumption rate per cell times the number of 
cells represented by a single walker. When sufficient 
nutrient is available, Hi increases until it reaches a 
threshold energy Ed and the walker divides into two. When 
the walker is “starved” for a long interval of time, Hi drops 
to zero and the walker “freezes”. This “freezing” 
represents the transition into pre-spore state. For 
simplicity, we have assumed in our experiments that the 
cellular density is suitable for sporulation, so that the 
limiting factor is the supply of nutrients. 
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5.2. Experimental results 
The diffusion equation is solved on a triangular 

lattice with a lattice constant Δx, the same lattice on which 
the boundary is outlined. For numerical stability the 
walkers’ step length, td   (where Δt is the simulation’s 
time-step), must be smaller than the lattice constant. All 
the simulations are stopped when the colony reaches a 
given radius. Results of numerical simulations of the 
model are shown in figure 3 (microscopic view: the 
hexagons are those lattice cells that were occupied by 
walkers and became part of the colony; the reaction-
diffusion equations are solved on the whole lattice, 
weather part of the colony or not) and figure 4 (colonial 
patterns, with Nc = 20 and the conversion factor c is 6 (a), 
8 (b), 10(c) and 30(d) from left to right respectively). As in 
real bacterial colonies, the simulated patterns are 
compact at high nutrient concentration levels and become 
fractal with decreasing nutrient level. For a given nutrient 
level, the patterns are more ramified as the food 
concentration increases. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
a              b              c                d 

 
 
 
 
 

Figure5 shows the qualitative dependencies of 
the fractal dimension of the nutrient concentration levels. 
Clearly, the results are encouraging and do capture some 
features of the experimentally observed patterns. The 
branching patterns are a manifestation of the diffusion 

field instability. From this perspective, it is quite 
reasonable that the effect of the instability is enhanced as 
the food concentration is raised and the motion of the 
bacteria is suppressed. This is analogous to lowering the 
diffusion coefficient of a bacterial density field (in a 
continuum description), which leads further to the 
diffusively unstable region of the parameter space. 
 

 

 
 
 
 
 
 
 

One can explain why the velocity of the fine 
radial branching patterns is lower than that of the fractal 
growth observed at higher levels. We assume that for the 
colonial adaptive self-organization, the T morphotype 
employs three kinds of chemotactic responses. One is the 
food chemotaxis, which is expected to be dominant for a 
range of nutrient levels (the corresponding levels of 
nutrient are determined by the constant K). The two other 
kinds are self-induced chemotaxis or signaling 
chemotaxis, i.e. chemotaxis towards or away from 
chemical produced by the bacterial cells themselves. For 
efficient self-organization it is useful to have two 
chemotactic responses operating on different length 
scales, one regulating the dynamics within the branches 
(short length scale) and the other regulating the 
organization of the branches (long length scale). The 
length scale is determined by the diffusion constant of the 
chemical agent and the rate of its spontaneous 
decomposition. If there is also decomposition of the 
chemical by the cells, it gives them additional control of 
the length scale.  

6. Self-organization and morphogenesis in 
biological systems 

The principles of construction in complex 
integrated systems of elements that allow the systems to 
adapt their behavior in a complex environment can be 
summarized in two themes: first, the emergence of 
profound spontaneous order; second, a bold hypothesis 
that the target of selection is a characteristic type of 
adaptive system poised between order and chaos. The 

Fig. 3 A branch in a simulation of the DW model 

Fig. 4 Simulated\ colonial patterns of the DW model 

Fig. 5 Fractal dimension as a function of initial food 
concentrations (▲-Nc=10;■-Nc=20;♦- Nc=30; ●-Nc=40) 
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unexpected spontaneous order is this: vast interlinked 
networks of elements behave in three broad regimes - 
ordered, chaotic, and complex regime on the frontier 
between order and chaos. The spontaneous order of the 
ordered regime foretells much of the order seen in 
aspects of developmental biology. Ordered systems, 
particularly those near the edge of chaos, have the 
needed properties. Moreover, we see that the same 
construction requirements find echoes at higher levels, 
such as whole ecosystems. Here the problem is to 
understand how such systems are coupled so that 
members coevolve successfully and how selection itself 
may achieve such coupling. Again, such ecosystems can 
behave in three broad regimes - ordered, complex and 
chaotic. Again, remarkably, coevolving systems may 
optimize their capacity to coevolve by mutually attaining 
the edge of chaos. 

Any major example of powerful self-ordering 
shows that in each case, the spontaneous order appears 
so impressive that it would be shortsighted to ignore the 
possibility that much of the order we see in the biological 
world reflects inherent order. 

Now, let us examine the "genetic program" which 
controls cell differentiation during development of the 
adult from the fertilized ovum, and the machinery that 
yields ordered morphologies. The main intent is to 
suggest that many highly ordered features of ontogeny 
are not the hard-won achievements of selection, but 
largely the expected self-organized behaviors of these 
complex genetic regulatory systems. 

The problem of cell differentiation is one of the 
two most basic issues in developmental biology. Different 
cell types - nerve, muscle, liver parenchyma - arise and 
differentiate from earlier cell types during development 
and, ultimately, in a human, form several hundred-cell 
types. Each cell in the human's body essentially contains 
the same genetic instructions as all the other cells. Those 
instructions include the structural genes coding for about 
100 000 different proteins. Cell types differ because 
different subsets of genes are "active" in the different cell 
types. The activation and repression of genes is itself 
controlled by an elaborate regulatory network in which the 
products of some genes switch other genes on or off. 
More generally, the expression of gene activity is 
controlled at a variety of levels, ranging from the gene 
itself to the ultimate protein product. It is this web of 
regulatory circuitry that orchestrates the genetic system 
into a coherent order. 

That circuitry may comprise thousands of 
molecularly distinct interconnections. In evolution, the 
very circuitry is persistently "scrambled" by various kinds 
of mutations, as the "logic" of the resulting developmental 
program is. It is important to note that the main properties 
such as the existence of distinct cell types, the 
homeostatic stability of cell types, the number of cell types 
in an organism, the similarity in gene expression patterns 
in different cell types, the fact that development from the 

fertilized egg is organized around branching pathways of 
cell differentiation, and many other aspects of 
differentiation are all consequences of properties of self 
organization, so profoundly immanent in complex 
regulatory networks whose order selection cannot avoid. 
All aspects of differentiation appear to be properties of 
complex parallel-processing systems lying in the ordered 
regime [19]. These properties may therefore reflect quasi-
universal features of organisms due not to selection 
alone, but also to the spontaneous order of the systems 
on which selection has been privileged to act. 

Now, let us discuss the second fundamental 
problem in developmental biology: morphology. The 
actual morphologies of organisms must also be viewed as 
a collaboration between the self-ordered properties of 
physico-chemical systems together with the action of 
selection. Oil droplets are spherical in water because that 
is the lowest energy state. Thus the genome's capacity to 
generate a form must depend on very many physico-
chemical processes constituting a panoply of 
developmental mechanisms beyond the sheer capacity of 
the genome to coordinate the synthesis of specific RNA 
and protein molecules in time and space. Morphology is a 
marriage of underlying laws of form and the agency of 
selection.  

5. Conclusions 

The paper deals essentially with pattern 
formation in biological systems trying to underline a 
connection between the general principles of 
morphogenesis, the dynamics of the reaction-diffusion 
systems and the fractal analysis as a tool for modeling 
such processes. We have considered morphogenesis as 
an inherently multilevel process, involving processes on 
different time and space scales and focusing on the 
reciprocal influence between these levels, showing how 
micro-level rules give rise (via a self-structuring process) 
to macro-level behavior (as in pattern formation models), 
but also how the macro-level behavior determines the 
micro-level behavior, as an essential characteristic of the 
living systems. Thus, in our model morphogenesis, there 
is no longer a slave process, but unfolds by the 
interactions between pattern formation, the collective 
behavior of the cells, and its feedback to the pattern 
formation process. Reaction-diffusion (RD) theory for 
pattern formation was considered in relation to processes 
of biological development in which there is a continuous 
growth and shape change as each new pattern forms. We 
have shown that RD-systems provide a strong framework 
for the modeling of growth processes and in particular, in 
biological systems. The RD-system model also permits 
the interaction of such systems in more complicated ways 
to provide emergent behaviors. Information can be 
considered energy, and can be manipulated as such. This 
may allow us a stronger method to implement bio-
systems having dissipative information structures, taking 
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into account that the same model works across multiple 
scales and may allow loose coupling. This is particularly 
common in the development of multicellular organisms 
that served as models for simulation, because in addition 
to the feedbacks in the chemical dynamics, there is then 
another loop linking size and shape changes with the 
reaction-diffusion patterning of growth controllers in the 
growing region.  

The research presented here can be extended in 
several directions. One type of possible extension to the 
study presented here is to better understand the behavior 
of the biological systems, in order to choose the most 

adequate mathematical model. We have already 
observed that much of the mathematical research that led 
to a large lot of models is not motivated by the study of 
the biological systems, and presumably will not contribute 
directly to their understanding. Another type of extension 
to the study presented here is to apply the approach of 
’generic modeling’ to other types of biological systems. 
Yet another type of possible extension is the use of the 
same models (or closely related) and the same bacteria in 
order to study various phenomena (not only biological) 
that are expressed in colonial pattern, and we have 
already started studies regarding the tumor growth [5]. 
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