
JOURNAL of MEDICINE and LIFE

732 JOURNAL of  MEDICINE and LIFE. VOL: 18 ISSUE: 8 AUGUST 2025

© 2025 by the authors. This article is an open access article distributed under the terms and conditions of  the Creative Commons Attribution (CC BY 4.0) license.

JML | REVIEW  

Revolution or routine? Comparing AI and traditional imaging 
in thoracic surgery outcomes: a systematic review 
Raluca Oltean1, Liviu Oltean1*, Andreea Nelson Twakor2, Teodor Horvat1,3

1.  Carol Davila University of  Medicine and Pharmacy, Bucharest, Romania
2.	 Department of  Internal Medicine, County Clinical Emergency Hospital, Constanta, Romania
3.	 Department of  Thoracic Surgery, Prof. Dr. Al. Trestioreanu Bucharest Oncological Institute, Bucharest, Romania 

* Corresponding author
Liviu Oltean,
Carol Davila University of Medicine and Pharmacy, 
Bucharest, Romania;
E-mail: liviu@sofimar.ro 

ABSTRACT
Artificial intelligence (AI) and machine learning (ML) are increasingly pivotal in advancing postoperative imaging for 
thoracic surgery, presenting transformative potentials in clinical practice. This comprehensive review investigates the 
current applications and future directions of  AI and ML by comparing them with traditional imaging methods. It 
highlights how these technologies assist in the early detection of  postoperative complications such as infections, anas-
tomotic leaks, and pleural effusions through sophisticated image analysis algorithms. The discussion extends to the 
automation of  routine imaging tasks, which not only improves efficiency but also allows radiologists to focus on more 
complex cases. Looking ahead, the article considers the implications of  emerging technologies such as deep learning 
and neural networks. This further enhances the capabilities of  AI in medical imaging. By providing a thorough over-
view of  the current landscape and anticipating future advancements, this article highlights the profound impact of  AI 
and ML on improving patient care and outcomes in thoracic surgery. 
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INTRODUCTION

The integration of  artificial intelligence (AI) and machine learning 
(ML) into medical imaging has heralded a new era of  innovation 
and precision in healthcare. In the context of  postoperative im-
aging for thoracic surgery, these technologies are rapidly trans-
forming the landscape, offering unprecedented opportunities to 
enhance patient care and outcomes. Postoperative imaging plays a 
critical role in the management of  thoracic surgery patients. This 
helps in the early detection of  complications, monitoring recovery, 
and guiding subsequent therapeutic decisions [1]. Traditionally, 
the interpretation of  these images has relied heavily on the exper-
tise and experience of  radiologists [2]. However, the beginning of  
AI and ML is reshaping this paradigm by introducing advanced 
computational techniques that augment human capabilities [3].

AI and ML algorithms are designed to analyze large volumes of  
imaging data with exceptional accuracy and speed. This identifies 
patterns and anomalies that may be imperceptible to the human 
eye [4]. These technologies leverage complex datasets, allowing di-
verse imaging modalities such as X-rays, CT scans, and MRIs, to 
train models that can predict postoperative outcomes, detect com-
plications, and even suggest personalized treatment plans (Figure 
1) [5,6,7]. 

One of  the most significant advantages of  AI in postoperative 
imaging is its ability to provide real-time analytics and decision 
support. Machine learning models can deliver instantaneous 
feedback to clinicians. This facilitates timely interventions and 
optimizes patient management strategies [8]. This capability is 
particularly crucial in thoracic surgery, where early detection of  
complications such as infections, anastomotic leaks, and pleural 
effusions can significantly influence patient prognosis [9].

Furthermore, the integration of  AI and ML into postoperative 
imaging extends beyond mere image interpretation. These tech-
nologies are being employed to automate routine tasks, stream-
line workflows, and allocate radiological resources more effec-
tively. By handling repetitive and time-consuming processes, AI 
enables radiologists to focus on complex cases that require their 
specialized expertise [10].

Despite the promising advancements, the adoption of  AI and 
ML in postoperative imaging also presents challenges. The quali-
ty and integrity of  data must be ensured, algorithm transparency 
needs to be maintained, and addressing ethical concerns such 
as patient privacy and bias are critical issues that need to be ad-
dressed [11]. 

In addition to improving diagnostic accuracy, AI and ML 
can enhance the predictive capabilities of  postoperative imag-
ing [12]. AI systems can forecast potential complications before 
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they manifest, enabling preemptive measures to be taken. This 
proactive approach can significantly reduce the incidence of  
adverse events, lower healthcare costs, and improve overall pa-
tient satisfaction [13,14]. Moreover, AI and ML are facilitating 
the development of  personalized medicine. These technologies 
can analyze a wide array of  patient-specific factors, including ge-
netic, demographic, and clinical data. This tailors postoperative 
care plans that can be uniquely suited to each individual [15,16]. 

Thus, the integration of  AI and ML into postoperative imag-
ing for thoracic surgery represents a paradigm shift that promises 
to enhance diagnostic accuracy, improve patient outcomes, and 
optimize clinical workflows [17]. As these technologies continue 
to evolve, they hold the potential to revolutionize postoperative 
care, making it more efficient, personalized, and effective. The 
ongoing research and development in this field are important be-
cause they will likely uncover new applications [18]. This might 
even refine existing technologies, solidifying the role of  AI and 
ML as indispensable tools in the future of  thoracic surgery and 
beyond [19].

MATERIAL AND METHODS

Study design

The primary objective of  this study was to evaluate the diagnostic 
accuracy, patient outcomes, and recovery times associated with 
each imaging modality. The research methodology involved a 
detailed review of  existing literature from the PubMed database, 
focusing on both AI-enhanced imaging and traditional imaging 

techniques such as chest X-rays (CXR), CT scans, MRI, and 
chest ultrasound (CU). The data for this study were carefully col-
lected from peer-reviewed articles, case reports, and clinical stud-
ies published in medical journals. Sources were selected based on 
their relevance to the use of  AI and ML in postoperative imag-
ing for thoracic surgery, as well as their emphasis on traditional 
imaging methods. The data set included studies that specifically 
addressed AI and ML applications in diagnosis, risk assessment, 
surgical outcomes, workflow enhancement, image segmentation, 
predictive models, postoperative care, among other areas.

Inclusion criteria

We included in our analysis:
•	 Peer-reviewed articles, clinical studies, and case reports.
•	 Studies that focus on the use of  AI and ML in postopera-

tive imaging for thoracic surgery.
•	 Studies that focus on traditional imaging methods (e.g., 

chest X-rays, CT scans, MRI, ultrasound) used in postop-
erative care for thoracic surgery.

•	 Comparative studies evaluating AI versus traditional im-
aging methods

•	 Articles with a published statement from the ethics com-
mittee for the collection and publication of  patient data

For the patient population we looked at:
•	 Studies involving patients who have undergone thoracic 

surgery, including lung, heart, and esophageal surgeries.
•	 Studies that include a diverse patient population in terms 

of  age, gender, and underlying health conditions.
•	 Case reports involving both pediatric and adult patients.

Figure 1. Comprehensive visual guide to AI data structures and processes. Created with Biorender [7]
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Exclusion criteria

The exclusion criteria included:
•	 Non-peer-reviewed articles, editorials, and opinion piec-

es.
•	 Studies that did not specifically focus on postoperative im-

aging for thoracic surgery.
•	 Studies that did not include a comparison between AI 

and traditional imaging methods.
•	 Studies involving patients who have not undergone tho-

racic surgery.

Outcomes measured:
•	 Diagnostic accuracy, sensitivity, and specificity of  imaging 

methods.
•	 Patient outcomes, including complication rates, readmis-

sion rates, and mortality rates.
•	 Recovery times and overall patient management effec-

tiveness.
We also included criteria about language and publication date. 

Thus, we only searched for studies published in the English lan-
guage, within the last 10 years.

Figure 2. PRISMA framework. The studies that were considered are summarized in Table 1.
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Table 1 provides a critical overview of  the current landscape 
and impact of  AI technologies in this field. We aimed to offer 
a holistic view of  how AI applications are being integrated and 
evaluated. We tried to do this when we included key details (num-
ber of  patients, age range, gender distribution, other demograph-
ics, site intervention, study focus, key findings, challenges, patient 
recovery time, and patient outcomes) [30,31]. We insisted on the 
importance of  early complication prediction and timely interven-
tion facilitated by AI. We believe this contributed to improving 
patient recovery times and reducing complication rates.

Table 2 details traditional imaging studies for postoperative 
thoracic surgery. We included insights into the current practic-
es and their associated outcomes, as well as critical parameters. 
We also compared various traditional imaging methods like chest 
X-rays, CT scans, MRI, ultrasound, and fluoroscopy.

The selected traditional studies for analysis focus on the role 
and effectiveness of  various imaging modalities in postoperative 
care, particularly after thoracic surgery. Galata et al. [32] exam-
ined the impact of  routine postoperative chest X-rays on patient 
management and found that they led to changes in patient care 
in a small percentage of  cases, recommending the limitation of  
routine X-rays due to their limited impact. Similarly, Porter et al. 
[33] highlighted that most routine chest X-rays post-thoracic sur-
gery did not influence clinical decision-making, presenting a sig-
nificant potential for cost savings but also raising concerns about 
the possibility of  missing complications without routine X-rays. 
Malik et al. [34] compared ultrasonography to chest X-rays, 
demonstrating higher accuracy with ultrasonography and a re-
duced need for chest X-rays, while Elabdein et al. [35] empha-
sized the significant impact of  targeted postoperative imaging on 
patient management.

Further analysis by Malik et al. [36] through a retrospective 
study revealed that routine imaging often did not alter patient 
management, leading to the development of  criteria-based im-
aging protocols. Jakobson et al. [37] supported the use of  ultra-
sonography as a reliable alternative to chest X-rays, highlighting 
its benefits in reducing radiation exposure and costs. Lee et al. 
[38] focused on FDG PET/CT for postoperative surveillance, 
demonstrating high diagnostic accuracy for recurrence and rec-
ommending selective use. Wilson et al. [39] discussed the benefits 
and challenges of  surveillance imaging, advocating for personal-
ized imaging strategies. Liang et al. [40] stressed the role of  im-
aging in early detection of  complications, while Rasche et al. [41] 
compared various imaging modalities, identifying their specific 
strengths and weaknesses and recommending tailored use based 
on clinical needs (Table 3). 

AI technologies, such as those reported by Wijnberge et al. [21] 
and Kilic et al. [22], have demonstrated significant enhancements 
in diagnostic accuracy, risk assessment, and surgical outcomes. 
These studies show that AI can reduce diagnostic errors by up to 
20% and predict postoperative complications with an accuracy 
of  85%. Additionally, deep learning models, as highlighted by 
Kusunose et al. [23] and Nam et al. [24], have outperformed tra-
ditional methods in detecting regional wall motion abnormalities 
(RWMAs) and malignant nodules. 

In contrast, traditional imaging methods often do not signifi-
cantly influence clinical decision-making. Porter et al. [33] found 
that routine chest X-rays post-thoracic surgery had a limited im-
pact on patient management, with most imaging not affecting 
the clinical course. While some methods, such as FDG PET/CT, 
demonstrate high diagnostic accuracy for recurrence [38], oth-
ers, like ultrasound, are limited by factors such as depth penetra-

•	 Studies that did not provide detailed demographic infor-
mation about the patient population.

•	 Case reports that lacked sufficient detail about the imag-
ing methods used and patient outcomes.

Outcomes measured:
•	 Studies that did not report on key outcomes such as di-

agnostic accuracy, patient outcomes, and recovery times.
•	 Studies that focused solely on preoperative imaging or im-

aging for other types of  surgeries.
We also excluded studies published in languages other than 

English, more than 10 years ago. We only considered them if  
they provided good insights that were critical to the discussion.

Statistical methods

Data were analyzed using IBM SPSS Statistics version 29.0 (IBM 
Corp., Armonk, NY, USA) [11]. Continuous variables were 
expressed as mean ± standard deviation (SD) or median (inter-
quartile range, IQR) depending on the distribution assessed by 
the Shapiro–Wilk test. Categorical variables were expressed as 
counts and percentages. To summarize demographic character-
istics, patient outcomes, and key findings from each study and 
case report, descriptive statistics were used in the data analysis. 
Comparative analysis was also conducted to evaluate differenc-
es in diagnostic accuracy, complication rates, and recovery times 
between AI and traditional imaging techniques. 

Qualitative analysis assessed the challenges and limitations 
identified in each study and case report to provide context for 
the findings. 

Ethical considerations were strictly adhered to throughout the 
study. The use of  published data ensured compliance with ethical 
guidelines, and no new patient data were collected. All reviewed 
studies and case reports were obtained from reputable sources 
and conducted in compliance with ethical standards. This study 
did not involve patient-identifiable information, thereby main-
taining patient confidentiality and data privacy. 

Based on the above, we created a Prisma flowchart [20] that 
breaks down our search results (Figure 2).

RESULTS

The AI studies reviewed included a patient population ranging 
from 150 to 310 individuals, with an age variability of  30 to 80 
years. The focus of  these AI studies differed from applications in 
diagnosis and risk assessment to surgical outcomes and postop-
erative care.   

In contrast, traditional imaging studies involved patient popu-
lations ranging from 290 to 330 individuals with similar ageing 
patterns. We also had a balanced gender distribution. For both 
categories of  studies, other demographics included smokers, pa-
tients with comorbidities, and chronic illnesses. The emphasis 
of  these studies was primarily on the use of  established imaging 
techniques for diagnosis, postoperative care, and follow-up.  

We considered all the above to ensure a comprehensive un-
derstanding of  the strengths and weaknesses of  each imaging 
modality. We also had some limitations. Data variability across 
different studies and clinical settings did not allow us to generalise 
our findings. We were also confronted with publication bias, as 
studies with positive findings are more likely to be published. 

The summary of  key findings for the final nine AI studies is 
presented in Table 1. [21-29] 
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nose et al. [23] reported an 8% complication rate, while Mumtaz 
et al. [27] and Wijnberge et al. [21] reported rates of  12% and 
10%, respectively. This consistency suggests that AI interventions 
in postoperative care might be more effective in reducing com-
plications, potentially due to the enhanced diagnostic accuracy 
and early detection capabilities that AI provides. In contrast, 
traditional studies show more variability, with complication rates 
ranging from 3.7% in Liang et al. [40] to a notably higher rate of  
72.1% in Elabdein et al. [35]. 

The wide range of  outcomes in traditional studies indicates 
that these methods may be less consistent in managing postoper-
ative complications. There is a possibility that this might be due 
to the reliance on different imaging modalities or less standard-
ized diagnostic processes.

Similarly, the mortality rates further emphasize the potential 
benefits of  AI in postoperative care. AI studies report relatively 
low mortality rates, while traditional studies like Liang et al. [40] 
report a significantly higher mortality rate of  18.2%. 

The overall trend of  our analysis indicates that AI has the 
potential to improve patient outcomes by reducing both compli-
cation and mortality rates. This makes it a valuable addition to 
postoperative care, especially in thoracic surgery.

DISCUSSION

The integration of  AI and ML into the realm of  postoperative 
imaging for thoracic surgery represents a significant advance-
ment over traditional imaging methods [42]. This discussion 
aims to compare the results from AI and traditional imaging 
studies and case reports. It also highlights the key findings, chal-
lenges, and patient outcomes. We found some useful comparisons 
with similar studies in the literature [43-45].

tion and resolution [34]. Traditional methods also show higher 
complication rates and longer recovery times, indicating a need 
for more effective diagnostic tools [32-41].

A comparative review of  complication and mortality rates re-
ported by some studies using artificial intelligence and traditional 
imaging techniques was conducted (Table 4).  

The comparison between complication and mortality rates in 
AI and traditional studies reveals several important trends (Fig-
ures 3 and 4). 

AI studies consistently report lower complication rates, ranging 
from 8% to 15% across the selected studies. For example, Kusu-

Table 4. The complication and mortality rates for both AI and tra-
ditional studies

Study Complication Rate 
(%)

Mortality Rate 
(%)

AI Studies

Wijnberge et al. [21] 10% N/A

Kusunose et al. [23] 8% 3%

Dias et al. [26] 15% N/A

Mumtaz et al. [27] 12% 12%

Zhou et al. [28] 10.9% N/A

Traditional Studies

Elabdein et al. [35] 72.1% N/A

Liang et al. [40] 3.7% 18.2%

Jakobson et al. [37] 12% N/A

Table 3. Comparison between AI and traditional studies

Aspect AI studies Traditional studies

Key findings - AI applications enhance diagnostic accuracy, risk 
assessment, and surgical outcomes. 
- AI improves the prediction of postoperative 
complications with up to 85% accuracy. 
- Deep learning models outperform traditional 
methods in detecting RWMAs and malignant 
nodules. 
- AI-based models reduce postoperative complica-
tions by 25%. 
- AI supports surgical decision-making, improves 
workflow, and enhances care quality [21-29].

- Routine imaging often did not influence clinical decision-mak-
ing. 
- High diagnostic accuracy for recurrence in some imaging tech-
niques like FDG PET/CT. 
- Certain imaging methods, such as ultrasound, are quick and 
useful but have limitations in depth penetration and resolution. 
- Some imaging modalities show higher complication rates and 
longer recovery times [32-41].

Improving Patient 
Recovery Time

- AI reduces diagnostic errors and predicts compli-
cations early, leading to quicker interventions and 
recovery. 
- AI enhances early detection of complications, 
facilitating faster recovery. 
- AI reduces intraoperative complications and 
improves postoperative care efficiency. 
- AI-based interventions are associated with re-
duced complication rates and readmissions [21-29].

- Limited or no significant improvements noted in patient recov-
ery times. 
- Traditional imaging methods, like chest X-rays and CT scans, 
show limited impact on recovery time due to lower accuracy and 
radiation exposure. 
- Use of MRI and ultrasound also shows limited impact on pa-
tient recovery times [32-41].

Patient Outcomes - 10% complication rate, 5% readmission rate [21].
- 8% complication rate, 3% mortality rate [23].
- 15% complication rate, 8% readmission rate [26].
- 12% complication rate, 10% readmission rate [27].
- 10.9% complication rate [28].

- 72.1% complication rate, significant time reduction in diagnos-
tic process [35]. 
- 3.7% complication rate [40].
- 18.2% mortality rate [40].
- Various outcomes with high complication and readmission 
rates [32-41].
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From our results section, we noticed that AI-enhanced imaging 
has promising results in improving patient outcomes and reduc-
ing recovery times. Moreover, other AI-assisted thoracic surgery 
studies also reported lower complication rates and improved pa-
tient management. In our study, we show that Wijnberge et al. 
[21] report a 10% complication rate and a 5% readmission rate 
when using AI imaging techniques, significantly lower than those 
reported with traditional imaging. This aligns with the findings 
of  Topol [54] and Obermeyer et al. [55], who found that AI-en-
hanced patient monitoring and early intervention can lead to 
better patient outcomes and shorter recovery times.

Traditional imaging methods, on the other hand, often result 
in longer recovery times and higher complication rates. For in-
stance, traditional postoperative care for lung surgeries showed 
a 10% readmission rate, highlighting the limitations of  tradi-
tional imaging in early detection and intervention. Studies by 
Smith-Bindman et al. [56] and Brenner et al. [57] have docu-
mented the risks associated with traditional imaging, including 
radiation exposure and the higher incidence of  missed diagnoses, 
which can adversely affect patient recovery.

It is well known that AI has certain advantages, but to inte-
grate it into clinical practice, we must address some issues. These 
include data scarcity, algorithm transparency, ethical concerns, 
and the need for continuous model updates. Parikh et al. [58] 
and Amann et al. [59] emphasized the importance of  robust data 
governance frameworks and transparent AI models to build clin-
ical trust and ensure the efficacy of  AI applications in healthcare.

The above concerns also apply to traditional imaging. These 
include radiation exposure, high costs, and dependency on 
radiologist expertise. Research by Brenner & Hall [57] and 
Smith-Bindman et al. [60] highlighted the risks associated with 
radiation exposure from repeated imaging and the economic 
burden of  high-cost imaging modalities like CT and PET scans. 

The results of  the AI studies in this discussion are in line with 
several other notable studies in the literature. Gulshan et al. [61] 
demonstrated that AI algorithms could significantly improve 
the detection of  diabetic retinopathy, achieving accuracy levels 
comparable to human experts. Similarly, McKinney et al. [62] 
showed that AI could enhance breast cancer screening, further 
supporting the potential of  AI to improve diagnostic accuracy 
and patient outcomes across various medical domains.

The integration of  AI into postoperative imaging for thorac-
ic surgery is still in its early stages, with significant potential for 

AI and ML applications have demonstrated a marked im-
provement in diagnostic accuracy and sensitivity compared to 
traditional imaging methods [46]. In the AI-assisted studies re-
viewed, diagnostic errors were significantly reduced, with some 
studies reporting up to a 30% decrease in errors [47]. For in-
stance, Bernstein et al. [48] in a study on AI applications in tho-
racic surgery reported a 20% reduction in diagnostic errors, with 
AI predicting postoperative complications with 85% accuracy. 
Similarly, another study found that AI-based triage improved ra-
diologist turnaround times by 30% and reduced false positives 
and negatives by 10% [49].

These findings are consistent with other studies in the litera-
ture. Esteva et al. [50] demonstrated that AI models could achieve 
dermatologist-level accuracy in skin cancer classification, a find-
ing echoed by Rajpurkar et al. [51] in their study on pneumonia 
detection from chest X-rays. 

In contrast, traditional imaging methods, while reliable, often 
suffer from higher error rates and dependency on radiologist ex-
pertise. Traditional imaging studies reviewed showed diagnostic 
error rates ranging from 20% to 30%, with significant variability 
depending on the radiologist's experience and the quality of  the 
imaging [52]. Brady et al. [52] and Zhang et al. [53] highlighted 
the limitations of  traditional imaging, noting the significant vari-
ability in diagnostic accuracy and the potential for human error. 
This can lead to missed diagnoses and delayed treatments.

Figure 3. Comparison of reported complication rates across AI studies

Figure 4. Comparison of reported complication rates across tra-
ditional studies
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in postoperative thoracic surgery. Traditional methods (X-rays, 
CT scans, MRI) remain the backbone of  diagnostic imaging. 
They offer high-resolution images and detailed anatomical views, 
which are ultimately essential for surgical planning and postop-
erative assessment. These methods are well-established, widely 
available, and generally understood by healthcare providers. Tra-
ditional imaging is crucial in contexts where AI tools may not 
yet be fully integrated or when immediate access to advanced AI 
technologies is limited. 

Moreover, traditional imaging provides a safety net, ensuring 
that complex cases can be cross-verified with established tech-
niques, thus maintaining a high standard of  patient care. There-
fore, while AI represents the future of  medical imaging, the en-
during value of  traditional methods cannot be overlooked in the 
ongoing evolution of  postoperative care in thoracic surgery.
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