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ABSTRACT
Obesity is a global health concern owing to its association with numerous degenerative diseases and the fact that it 
may lead to early aging. Various markers of  aging, including telomere attrition, epigenetic alterations, altered protein 
homeostasis, mitochondrial dysfunction, cellular senescence, stem cell disorders, and intercellular communication, 
are influenced by obesity. Consequently, there is a critical need for safe and effective approaches to prevent obesity 
and mitigate the onset of  premature aging. In recent years, intermittent fasting (IF), a dietary strategy that alternates 
between periods of  fasting and feeding, has emerged as a promising dietary strategy that holds potential in counter-
acting the aging process associated with obesity. This article explores the molecular and cellular mechanisms through 
which IF affects obesity-related early aging. IF regulates various physiological processes and organ systems, including 
the liver, brain, muscles, intestines, blood, adipose tissues, endocrine system, and cardiovascular system. Moreover, 
IF modulates key signaling pathways such as AMP-activated protein kinase (AMPK), sirtuins, phosphatidylinositol 
3-kinase (PI3K)/Akt, mammalian target of  rapamycin (mTOR), and fork head box O (FOXO). By targeting these 
pathways, IF has the potential to attenuate aging phenotypes associated with obesity-related early aging. Overall, IF 
offers promising avenues for promoting healthier lifestyles and mitigating the premature aging process in individuals 
affected by obesity. 
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INTRODUCTION

Aging is a biological process marked by worsening health, 
changed metabolism, a functional decline of  tissues and organs, 
structural deterioration, and diminished adaptability [1,2]. One 
of  the many factors that can cause aging to manifest more quick-

ly is obesity [3]. Obesity can cause early aging due to metabol-
ic imbalances, as well as cellular and biomolecular changes [3]. 
Potentially, obesity can create an environment that increases cell 
senescence [4]. 

Over 800 million individuals worldwide suffer from obesity, 
which is expected to reach epidemic proportions by 2030, affect-
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ing over 1 billion persons [5]. It is believed that this will also in-
crease the prevalence of  non-communicable diseases, which are 
currently responsible for 71% of  all deaths worldwide [6].

Numerous therapeutic strategies aim to address both obesity 
and promote healthy aging, with dietary modifications such as 
intermittent fasting (IF) emerging as a simple and safe approach 
[7–10]. IF encompasses various eating patterns known to facili-
tate healthy aging, promote longevity, and sustain overall health 
[9,11], and the ketone bodies produced during IF improve the 
body’s bioenergetics and metabolic efficiency [9]. Although pre-
vious research has explored the effects of  IF on aging, its impact 
on obesity-induced early aging, particularly in humans, remains 
to be fully elucidated. The aim of  this study was to review the 
potential of  IF in preventing obesity-related early aging from a 
molecular and cellular perspective.

The hallmarks of aging 

Aging is characterized by the progressive decline of  physiolog-
ical integrity, resulting in diminished function and an increased 
vulnerability to mortality. Its defining characteristics include ge-
nomic instability, telomere attrition, epigenetic modifications, al-
tered protein homeostasis, dysregulation of  nutritional signaling, 
mitochondrial failure, cellular senescence, stem cell dysfunction, 
and impaired intercellular communication [12]. These hallmarks 
represent the biological mechanisms dictating the pace of  aging 
and can be categorized into three classes: primary, antagonistic, 
and integrative hallmarks [1,12]. 

Genomic instability, telomere attrition, epigenetic changes, 
and loss of  proteostasis are the defining characteristics of  the 
most prevalent sources of  damage [12–14]. In vitro and in vivo, 
DNA damage and mutations that cause genomic instability are 
crucial indicators of  aging cells [14]. Somatic mutations, improp-
er clonal proliferation, DNA modification and repair mecha-
nisms, cellular checkpoint responses, replication fidelity integrity, 
and antioxidant systems that can repair DNA are all recognized 
effects of  genome instability [1,12]. In the germline, stem cells, 
and mitotic cells, telomere attrition results in dysfunction. Mal-
adaptive epigenetic changes involve inappropriate DNA methyl-
ation at specific sites and specific histone modifications. Reduced 
protein function, increased levels of  damaged or misfolded pro-
teins, and the persistence of  non-recycled proteins and organelles 
are all consequences of  proteostasis dysfunction during aging 
[1,12–14]. 

The dysregulation of  nutritional signaling is an essential hall-
mark of  aging. It is initially a compensatory response that can 
reduce damage, but it eventually causes further damage in chron-
ic or severe conditions [1,12]. The insulin/insulin-like growth 
factor-1 (IGF-1) signaling (IIS) pathway becomes more active 
when nutritional signaling is dysregulated with aging. The role 
of  anabolic signaling in accelerating aging is strongly supported 
by the increased activity of  the mammalian target of  rapamycin 
(mTOR) pathway [1,12]. 

The mitochondrium is the primary energy source of  cells and 
is involved in many cellular processes, including cell metabolism, 
inflammation, and cell cycles. However, mitochondrial dysfunc-
tion is also one of  the critical hallmarks of  aging [15]. This con-
dition can disrupt mitochondrial biogenesis, recycling, and disor-
ganization, leading to increased levels of  reactive oxygen species 
(ROS) and respiratory system imbalance [12,16,17]. 

Cellular senescence is intricately linked with aging and in-
cludes the inability to proliferate, loss of  normal cell function, 

secretion of  proinflammatory factors, alteration of  neighboring 
cell behavior, and protease-mediated degradation of  extracellu-
lar components, all of  which will cause biological dysfunction 
[4,12,13]. Senescent cells exhibit a distinctive pathogenic senes-
cence-associated secretory phenotype, which induces secondary 
senescence, disrupts tissue homeostasis, and impairs tissue regen-
eration and repair [18].

Stem cell depletion and altered intercellular communication 
are markers responsible for the functional deterioration associat-
ed with aging. The quantity of  stem cells, as well as their ability 
to proliferate and differentiate can be decreased by stem cell ex-
haustion [12,13]. Telomere attrition, a known trigger for stem 
cell disturbances, can initiate mitochondrial compromise, leading 
to functional decline during aging, particularly in bone marrow 
mesenchymal stem cells (BMMSCs) [19]. In addition, studies 
suggest that aging reduces intestinal stem cell numbers and func-
tion, potentially linked to decreased fatty acid oxidation [20].

Intercellular communication, such as neurohormonal signal-
ing, is impaired during aging owing to increased inflammatory 
response, decreased immune system resistance to pathogens and 
malignancies, and changes in the composition of  the extracellu-
lar environment. In these conditions, damage in one tissue can 
cause aging-specific damage in other tissues [1,12,13]. Impaired 
intercellular communication also leads to inflamaging, a concept 
characterized by elevated levels of  proinflammatory factors [3]. 

The progression of  biological aging can be measured by as-
sessing certain aging-related parameters [21,22], which comprise 
biomarkers of  ‘damage’ and ‘compensation’ for various aging 
hallmarks. These hallmarks are reflected in molecular, physiolog-
ical, pathological, and psychological changes [13,21,23], collec-
tively contributing to clinical manifestations commonly observed 
in elderly individuals, including frailty, sarcopenia, anemia, nutri-
tional deficiencies, and compromised immune function. In addi-
tion, these hallmarks are associated with age-related conditions 
such as cardiovascular disease, cancer, diabetes, and Alzheimer's 
disease [1].

Measuring metabolic parameters is a key aspect of  evaluating 
biological aging [24]. Aging leads to a decline in metabolism and 
muscle mass, and an increase in fat mass, resulting in reduced 
energy expenditure for the body’s basal needs. The basal met-
abolic rate (BMR) reflects the energy required to maintain the 
body’s fundamental functions at rest. Adults typically experience 
a 1–2% decrease in BMR every 10 years. Furthermore, BMR is 
linked with metabolic age, which reflects the correlation between 
the BMR of  an individual and those in the same age group. A 
higher BMR being associated with a lower metabolic age and 
vice versa [25]. Another metabolic parameter that can be ana-
lyzed is the resting metabolic rate (RMR), which represents the 
energy required to maintain the body’s basic functions and ac-
counts for 60–70% of  daily energy expenditure. Although RMR 
decreases with age, it may increase in older individuals owing 
to metabolic adjustments compensating for declining health and 
reduced functional capacity [24].

Obesity-related early aging  

Aging can progress at varying rates depending on the accumulation 
of  damage or the decline in resistance function [13]. Obesity is an 
important factor contributing to accelerated aging [3]. Defined by 
an abnormal or excessive accumulation of  body fat, obesity is most 
commonly assessed using the body mass index (BMI) [26]. Accord-
ing to the Asia Pacific classification, obesity is diagnosed when the 



JOURNAL of MEDICINE and LIFE

267

© 2024 by the authors. This article is an open access article distributed under the terms and conditions of  the Creative Commons Attribution (CC BY 4.0) license.

JOURNAL of  MEDICINE and LIFE. VOL: 17 ISSUE: 3 MARCH 2024

of  mitochondrial ROS, and reduce the level of  antioxidants [35]. 
In addition, obesity may increase the secretion of  proinflammato-
ry mediators and decrease the production of  anti-inflammatory or 
insulin-sensitizing factors. This imbalance can prompt adipocytes, 
endothelial cells, and immune cells to release proinflammatory 
cytokines, endothelial adhesion molecules, and pro-atherogenic 
and chemotactic mediators within adipose tissue. Obesity may 
also influence the unfolded protein response (UPR), mediated by 
genomic instability, accumulated DNA damage, and proteasome 
dysfunction [3,35]. 

Obesity can also cause DNA methylation and telomere short-
ening due to epigenetic modifications [3,36]. Telomere shorten-
ing is influenced by a variety of  factors, including age, smoking, 
stress, gender, genetic background, nutritional status, food and al-
cohol intake, and physical activity. Excessive nutrition associated 
with obesity can induce inflammation and oxidative stress, both 
of  which can accelerate telomere shortening [37]. A study found 
that obesity and subcutaneous (especially truncal) adiposity were 
important determinants of  telomere shortening in a group of  In-
dian women with abnormal fasting glycemia [38]. Interestingly, a 
major multicenter study revealed that higher levels of  child obesity 
markers are associated with shorter telomeres [39]. The effect of  
obesity on epigenetics has been demonstrated by the association 
between BMI and accelerated epigenetic aging in a sample of  chil-
dren at high risk for obesity, suggesting that early-onset accelerated 
epigenetic aging can occur in obese individuals [40].

Obesity may accelerate aging by influencing several factors 
[3,41–43]. The dysregulation of  nutritional signaling, mediated 
by the IIS, sirtuins, mTOR, and mitogen-activated protein kinase 
(MAPK) pathways, is a key mechanism by which obesity impacts 
aging [3]. Studies have shown that obesity can increase the number 
of  senescent T cells and macrophages in the inflammatory foci of  
the visceral adipose tissue of  obese mice [42]. Furthermore, obe-

BMI exceeds 24.9 kg/m2, whereas the World Health Organization 
(WHO) identifies obesity at a BMI greater than 30 kg/m2 [26,27]. 

Obesity and aging are linked to systemic inflammation and can 
be influenced by adopting a healthy lifestyle, suggesting shared cel-
lular and molecular pathways and underlying factors. In addition, 
both conditions are associated with a shortened lifespan and an 
increased ratio of  visceral to subcutaneous adipose tissue [28,29]. 
Similarly to aging, obesity promotes inflammatory responses, 
leading to subclinical inflammation and a chronic low-grade in-
flammatory state resulting from unresolved inflammation and pro-
longed stimulation [30]. Excessive macronutrient intake in obesity 
can lead to adipocyte hypertrophy, hypoxia, or necrosis, triggering 
macrophage infiltration and activating various proinflammatory 
pathways such as c-Jun N-terminal kinase (JNK), IkappaB kinase 
(IKK), protein kinase R (PKR), and toll-like receptors. These path-
ways may increase levels of  proinflammatory cytokines such as tu-
mor necrosis factor α (TNF-α), interleukin 6 (IL-6), and C-reactive 
protein (CRP), and decrease adiponectin levels [31]. 

Obesity can disrupt insulin signaling pathways, leading to insulin 
resistance, increased fat formation through triglyceride hydrolysis 
into fatty acids, increased sympathetic activity, and dysregulation 
of  the renin-angiotensin-aldosterone system [31]. It is frequently 
associated with metabolic syndrome, characterized by low-grade 
inflammation marked by significantly elevated levels of  inflam-
matory markers such as TNF-α and high mobility group box 1 
(HGMB-1) [29]. This chronic systemic inflammation can lead to 
insulin resistance, β-cell dysfunction and ultimately type 2 diabetes, 
nonalcoholic fatty liver disease, retinopathy, cardiovascular disease, 
nephropathy, and many other age-related diseases [32–34]. 

Obesity is thought to accelerate aging and contribute to the 
manifestation of  aging-related parameters. Figure 1 illustrates how 
aging can be accelerated by obesity. An accumulation of  DNA 
damage and a decrease in DNA repair can trigger adiposity defects 
and affect other tissues, increase inflammation and the production 

Figure 1. Illustration of how obesity induces the early aging process
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The benefits of IF on body adaptation  

Fasting entails abstaining from food for extended periods of  
time, ranging from several hours to several days, prompting im-
portant changes in metabolism termed as a ‘metabolic switch’. 
This transition typically occurs between 12 to 36 h after eating. 
During fasting, neurons and red blood cells still need glucose to 
produce adenosine triphosphate (ATP). In the first few hours of  
fasting, glycogen stores in the liver and muscles are broken down 
to provide glucose [11]. As glycogen becomes depleted, the liver–
brain–adipose neurocircuitry is triggered to facilitate the use of  
fats, particularly triglycerides, to sustain energy under prolonged 
fasting [57]. 

Owing to the finite supply of  glycogen, gluconeogenesis, which 
involves the breakdown of  proteins and triglycerides, becomes 
a crucial energy source. The most significant metabolic change 
triggered by fasting is the increased production of  ketone bodies 
(acetoacetic acid, β-hydroxy butyric acid (β-HB), and acetone) in 
the liver [58]. These ketone bodies, primarily β-HB, can freely 
permeate through the plasma membrane and across the blood–
brain barrier, allowing them to be used as an alternative fuel for 
ATP synthesis and inducing mitochondrial biogenesis, particu-
larly in neurons, heart muscle, and skeletal muscle [11,58–60]. 

One of  the critical mechanisms of  IF is its ability to induce 
these metabolic switches, favoring the transition from glucose 
to ketone bodies, particularly β-HB [11,61]. Beyond energy 
provision, β-HB can induce resistance to oxidative stress and in-
flammation, reduce insulin-dependent energy expenditure, and 
improve mitochondrial function and growth, DNA repair, and 
autophagy. These effects are mediated through the activation 
of  cell-protective master regulators such as nuclear factor eryth-
roid-2-related factor 2 (Nrf2), sirtuins, and AMPK, underpinning 
the potential of  IF as an anti-aging strategy [62].

Of  the various types of  IF, the three most researched are ADF, 
TRE, and a very low-calorie diet for three consecutive days per 
week (4:3 IF). These three regimens can increase circulating ke-
tone levels to varying degrees and durations. This shows that 
the metabolic switch is intermittently activated [11]. Another IF 
regimen, such as periodic fasting, can increase circulating ketone 

sity can change systemic and local microenvironments, impairing 
stem cell plasticity and decreasing their regenerative potential [43]. 

A cross-sectional cohort study involving young and middle-aged 
individuals found a correlation between poor metabolic health 
and obesity, and morphological and functional signs of  aging in 
the brain [44]. Obesity exacerbates immunological dysfunction by 
accelerating immunological sensitivity, increasing inflammation, 
and altering immune cell function [45,46]. Together with genet-
ic, environmental, and behavioral factors, obesity contributes to 
the onset of  degenerative diseases, further influencing the aging 
process [13].

IF, a potential anti-aging intervention 

Definition and types of IF  

IF is one of  the new approaches for preventing age-associated 
diseases [9,47]. IF entails periods of  fasting that typically last 12 
h or more [11]. According to another definition, during IF, peri-
ods of  fasting or minimal food intake are alternated with periods 
of  unrestricted eating [48]. Common IF methods include alter-
nate-day fasting (ADF), alternate-day modified fasting (ADMF), 
and periodic fasting (PF) [11,49,50]. 

The practice of  IF, limited to specific time periods, is called 
time-restricted feeding (TRF), a term more commonly used in 
non-human studies, whereas in human subjects it is referred to 
as time-restricted eating (TRE). However, many studies use these 
terms interchangeably [50–55]. TRF or TRE encompasses var-
ious types, including early time-restricted eating (eTRE) and de-
layed time-restricted eating (dTRE) [56].

Another variant of  IF is the 5:2 diet, involving modified fasting 
for 2 days per week [50,51]. It is important to note that different 
religions have distinct fasting practices, such as the Ramadan fast 
among Muslims, the Greek Orthodox Fast, and the Daniel Fast 
among Jews [9]. An overview of  the different types of  IF and 
their definitions is presented in Table 1.

Table 1. Types of IF and definitions

Types of IF Definitions

TRF Ad libitum food intake is allowed only during specified hours, creating prolonged intervals without food 
[50,138]

eTRE Limits the eating window to 4–10 h (most commonly 8 h), with food consumed in the earlier part of the day, 
with the remaining 14–20 h in an unfed state [56]

dTRE Limits the eating window to 4–10 h (most commonly 8 h), with food consumed in the later part of the day, 
with the remaining 14–20 h in an unfed state [56]

ADF Involves a day of fasting alternated with a day with ad libitum food intake [11,49,50]

ADMF Involves a day of fasting, with less than 25% of the normal calorie intake, alternated with a day with ad 
libitum food intake [11,49,50]

PF Fasting for 2–21 days [11,49]

5:2 diet Eating ad libitum for 5 days per week, with severely restricted calorie intake on the other 2 days, to about 
25% of normal levels to maintain energy balance [50]

Religious fasting Fasting is essential in many religious and spiritual practices, such as the Ramadan, Greek Orthodox, or the 
Daniel fast practiced by Jews [9,50]
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The difficulties of applying IF  

Although fasting has numerous advantages, it also has side ef-
fects similar to dietary restrictions. One of  the primary side ef-
fects is hunger, caused by an adaptive response to food depri-
vation. During fasting, ghrelin levels increase, leading to hunger 
and food-seeking behavior. An imbalance between satiety and 
hunger hormones can lead to eating disorders such as overeat-
ing or binge eating, particularly when following a narrow eating 
window in IF [50]. Excessive calorie intake can affect stomach 
capacity, causing discomfort and affecting sleep quality [50,68]. 
However, a study involving 46 obese and overweight adults found 
that both continuous and intermittent energy restriction did not 
elicit compensatory appetite adaptations, including increased 
hunger, satiety efficiency of  food or energy intake, and overall 
improvements in eating behavior [69]. 

Research suggests that certain types of  IF, such as ADF and 
ADMF, may regulate appetite over time [51]. TRE has a similar 
effect to calorie restriction by influencing peripheral satiety sys-
tems involving leptin, insulin, and GLP-1. However, compared 
to calorie restriction, TRE does not increase ghrelin levels signifi-
cantly, suggesting various implications for appetite modulation 
and a potential decrease in hunger following this IF approach 
[70]. This is supported by studies indicating that eTRE reduces 
mean ghrelin levels, promotes satiety, and reduces the urge to eat 
[71]. Another study has shown that serum levels of  ghrelin, mela-
tonin, and leptin were notably decreased during the intermittent 
diurnal fasting period of  Ramadan, but salivary cortisol levels 
were unchanged compared to the pre-fasting period [72]. Nev-
ertheless, further research is needed given the complexity of  the 
appetite regulation system and the diverse outcomes associated 
with dietary changes [73].

The additional adverse effects that may occur during fasting 
include headache, fatigue, adrenal stress, and chills [50]. Fasting 
can also lead to fluctuations in sex hormone levels and fertili-

levels [49,63]. Periodic fasting for 4 to 21 days can increase aceto-
acetic acid significantly from baseline to the end of  the fast [49].

Although the increased production of  ketone bodies is central 
to the benefits of  IF, other factors also contribute to its positive 
effects and requires further research [11]. Different dietary reg-
imens that result in higher ketone bodies, such as the ketogenic 
diet, have different impacts on cognitive function. A study in a rat 
model of  Alzheimer’s disease has shown that ketone production 
induced by the ketogenic diet and IF has different effects on the 
gut microbiota, disease progression, memory function, and the 
gut microbiome. In the study, although a ketogenic diet impaired 
memory function and increased the ratio of  Proteobacteria, partic-
ularly Enterobacteriales, which are relatively harmful bacteria, IF 
showed the potential to improve memory function and foster a 
healthier gut microbiome, despite containing the same amount 
of  cellulose [64]. 

Fasting is known to affect various physiological functions in 
the body. IF can also have a positive effect on multiple organs 
and systems, such as the brain, liver, muscles, intestines, blood, 
adipose tissues, and the endocrine and cardiovascular systems 
[11,50,65,66]. Beyond its physiological benefits, IF also influ-
ences mental health positively. For example, an 8-week ADF has 
been shown to reduce depression and binge eating disorder, char-
acterized by consuming larger meals than usual within short peri-
ods and often accompanied by loss of  control over eating. Despite 
potential negative effects, such as irritability, fasting can also lead 
to positive psychological experiences, such as increased feelings 
of  appreciation, achievement, pride, and control over increased 
hunger and the challenge of  fasting [51,67]. The benefits of  IF 
across various organs and systems are summarized in Table 2.

Table 2. The effect of IF on various organ systems 

Various organs or system Function

Brain Improved cognition, neurotropic factor production, synaptic plasticity, mitochondrial 
biogenesis, and resistance to injury and disease [11,50]

Cardiovascular system Reduced blood pressure, reduced resting heart rate, increased parasympathetic tone, stress 
resistance, enhanced right ventricular function, upregulated glycemic control, and protected 
myocardium against ischemia and inflammation-induced cellular damage [11,50,66]

Lipolysis Lipolysis, reduced leptin production, reduced inflammation [11]

Muscles Increased insulin sensitivity, enhanced efficiency/endurance, and reduced inflammation [11]

Intestines Enhanced motility, reduced inflammation, and enhanced intestinal stem cell function [11,118]

Liver Glycogen depletion, ketone production, increased insulin sensitivity, and reduced lipid 
accumulation [11]

Blood Elevated ketone level, reduce glucose, insulin, and leptin levels, elevated adiponectin levels, 
reduced inflammatory cytokines, and reduced markers of oxidative stress [11]

Endocrine Increased growth hormone in serum, decreased IGF-I concentration, and improved glucose 
metabolism [50]

Immune system Reduced the inflammatory response [50]

Kidney Boosted renal H2S production [139]
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often aging more rapidly than the gastrointestinal system [75]. 
IF may mitigate the progression of  aging in obese individuals 
through molecular and cellular mechanisms. A simplified repre-
sentation of  this concept is illustrated in Figure 2.

The effect of IF on body composition 

One of  the primary aging phenotypes is characterized by chang-
es in body composition [21,22]. Aging can induce alterations in 
bone, muscle, and adipose tissue. Osteosarcopenic obesity, char-
acterized by bone and muscle loss alongside increased adiposity, 
is an important consequence of  aging 76]. Research suggests that 
IF can influence body composition. For instance, aging is often 
associated with a decline in fat-free mass, an increase in body 
fat percentage, and a redistribution of  fat mass, particularly to-
wards central and visceral regions [77]. Both men and women 
experience an increase in body fat percentage with age, with men 
showing a more pronounced reduction in fat-free mass compared 
to women. In addition, women with stable fat-free mass tend to 
exhibit higher BMIs as they age [78].

Meanwhile, IF, with or without high-intensity interval training, 
yielded significantly less weight gain, reduced fat mass accumula-
tion, and lowered serum levels of  low-density lipoproteins (LDL) 
in obese mice [79]. In another study, a 30-day period of  IF has 
improved fat metabolism, reduced fat accumulation, promoted 
the conversion of  white fat to beige fat, and improved the compo-
sition of  gut microbiota in obese mice [80]. Moreover, research 
suggests that TRE reduces body weight, BMI, percentage of  
body fat, and waist circumference, while also contributing to a 
decrease in cardiovascular risk [81]. 

Changes in body composition can have a major effect on 
daily energy expenditure. Total energy expenditure (TEE) may 
decrease with aging owing to reductions in BMR and physical 
activity. The estimated TEE, derived from the estimated energy 
requirement (EER), also called energy expenditure estimation 

ty. Women’s reproductive hormones are particularly sensitive to 
changes in calorie intake, and those practicing IF may experi-
ence menstrual irregularities, metabolic issues, and early onset 
of  menopause. Changes in women’s menstrual cycles are often 
attributed to the depletion of  adipose depots, which releases es-
trogen and disrupts the menstrual cycle [50]. Conversely, fasting 
appears to be a beneficial approach for managing hyperandro-
genism in women with polycystic ovarian syndrome (PCOS) by 
improving menstruation and fertility [74]. Fasting has the po-
tential to reduce androgen hormone levels in women, although 
discrepancies in data warrant further investigation. Possible 
symptoms of  fasting include dyspepsia, vertigo, nausea, muscle 
soreness, and diarrhea. However, a study involving 1,422 subjects 
has shown that fasting for 4 to 21 days is generally safe and pro-
motes well-being. The reported complaints were mild, and most 
participants did not experience adverse effects [49].

The potential anti-aging effect of IF   

IF regimens have shown pro-longevity effects in diverse species 
(Table 3). These effects encompass not only biomolecular and 
cellular, but also physiological and well-being aspects.

The effect of IF on preventing obesity-related early 
aging

IF can regulate aging phenotypes  

Physiological aging involves a progressive decline in organ func-
tion [75], affecting various aspects such as body composition, the 
balance between energy supply and demand, neurodegeneration, 
and signaling networks crucial for maintaining homeostasis [22]. 
Specific vulnerabilities to aging can be observed across different 
organ systems, with the cardiovascular, endocrine, neurological, 
reproductive, pulmonary, renal, and musculoskeletal systems 

Table 3. The effect of IF on aging markers in different species

Type of IF Sample Aging marker Reference

ADF Human Improves physiological and molecular markers of aging in healthy, non-
obese individuals

[8]

Every-other-day (EOD) 
intermittent fasting

Human Decreases aging-related frailty and increases renal hydrogen sulfide 
production in a sexually dimorphic manner

[65]

IF Human Fasting enhances the cognitive function in older adults [7]

PF Human Associated with anticancer proteomic signature and upregulates key 
regulatory proteins of glucose and lipid metabolism, circadian clock, 
DNA repair, cytoskeleton remodeling, immune system, and cognitive 
function in healthy individuals

[139]

PF Human Safety, health improvement, and well-being [49]

TRF and ADF Rats Improve the metabolic profile and redox homeostasis [54]

eTRF Human Improves 24-h glucose levels and affects markers of the circadian clock, 
aging, and autophagy

[55]

Short-term fasting Mice Activates fatty acid oxidation to enhance intestinal stem cell function 
during homeostasis and aging

[118]

IF Drosophila Transcriptional regulation and physiological
responses of neuronal and muscle tissues

[140]
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response, oxidative stress, mitochondrial dysfunction, insulin re-
sistance, and telomere length loss through the disruption of  auto-
phagy and mitophagy [94,95]. IF has a substantial role in cardio-
vascular disorders by regulating lipid metabolism to reduce body 
mass and positively influence lipid profile parameters [96,97]. By 
mitigating atherogenic dyslipidemia, decreasing monocyte che-
moattraction, and reducing levels of  inflammatory markers such 
as IL-6, homocysteine, and CRP, IF can contribute to the preven-
tion of  atherosclerotic plaque formation [96,98,99]. In addition, 
IF has been shown to increase brain-derived neurotrophic fac-
tor (BDNF) levels, lowering systolic and diastolic blood pressure 
through the stimulation of  the parasympathetic nervous system 
[96,100].

The effect of IF on the endocrine system 

Changes in the endocrine system during aging can contribute to 
the onset of  various endocrine diseases, including osteoporosis, 
metabolic syndrome, type 2 diabetes mellitus, and other related 
conditions [101,102]. Alterations in the thyrotropic, somatotro-
pic, adrenal, and gonadal axes, as well as disruptions in bone for-
mation, calcium regulation, and glucose homeostasis are among 
the components of  the human endocrine system implicated in 
the aging process [101]. Obese individuals often experience ab-
normalities in the endocrine system [103], leading to weight gain 
and other symptoms owing to the underlying hormonal imbal-
ance [104]. Hypothalamic-pituitary dysfunction, encompassing 
issues like thyrotropic dysfunction, somatotropic dyshomeostasis, 
impaired gonadotropic function, and other abnormalities, is also 
associated with obesity [103,105,106].

Hormone replacement therapy, commonly used to treat en-
docrine disorders, can be controversial due to its substantial side 
effects [101,107]. By contrast, IF has emerged as an alternative 
approach for managing endocrine issues associated with aging. 
Research on obese individuals has shown that in addition to 
gradually reducing weight, BMI, glucose, HbA1c, insulin, and 
homa-IR levels, IF can also lower TSH and IGF-1 levels and in-

(EEE), relies heavily on an individual’s BMR or RMR [82]. IF 
has been shown to influence metabolism by increasing adiponec-
tin levels, which can further activate AMPK and PGC-1α, lead-
ing to enhanced mitochondrial biogenesis. Adiponectin also acts 
on the brain to increase REE, thereby contributing to weight loss 
[11,83,84]. Moreover, an increase in REE may also occur owing 
to the actions of  norepinephrine [85], potentially affecting the 
BMI and metabolic age. However, demonstrating these effects in 
studies has proven challenging owing to difficulties in regulating 
diet, physical activity, and body composition [84,86,87].

The effect of IF on the neurological system 

Cognitive decline is an important aging phenotype within the 
neurological system [23]. Obesity has been linked to cognitive 
impairment, representing an aging marker [88–90]. Notably, a 
high-fat diet in young adult and middle-aged rats has been shown 
to promote hippocampal inflammatory responses, indicative of  
early aging in the brain [88]. In addition, morbid obesity has 
been associated with lower executive performance, including 
inhibitory control, verbal fluency, and psychomotor speed [91]. 
In a study involving individuals with mild cognitive impairment, 
older patients who consistently practiced IF had superior cog-
nitive scores and improved cognitive function at the 36-month 
follow-up [7]. Similarly, another study reported that IF practiced 
from dawn to sunset over a 30-day period has improved cognitive 
function in healthy adults [92].

The effect of IF on the cardiovascular system 

Aging and the decline in cardiovascular system performance are 
closely associated [75], this process often leading to the devel-
opment of  cardiovascular diseases owing to changes in cardiac 
structure, the autonomic nervous system, and the accumulation 
of  epigenetic changes [93]. Notably, obesity serves as a com-
mon substrate for cardiac aging and heart disease, precipitating 
changes in cardiovascular structure and function, inflammatory 

Figure 2. The role of IF in preventing the process of early aging in obesity through molecular and cellular mechanisms
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been demonstrated to impact the redox state in human research, 
resulting in reduced lipid peroxidation, improved plasma total 
antioxidant capacity, and elevated uric acid levels [49]. ADF and 
TRE have also shown strong associations with ROS production, 
the activity of  the erythrocyte plasma membrane redox system 
(PMRS), plasma protein oxidation, lipid peroxidation, IL-6, and 
TNF levels in mice. In addition, advanced glycation end products 
(AGES), glutathione, antioxidants, and protein carbonyl levels 
significantly decrease with ADF [54].

Cellular senescence, characterized by increased oxidative stress 
and inflammation, is one of  the signs of  aging [12]. In obesi-
ty, the increased mass of  adipose tissue leads to an increase in 
systemic inflammation. A calorie-restricted high-fat diet (HFCR) 
has been found to improve glucose tolerance and lower liver tri-
glyceride, total cholesterol, and plasma leptin/adiponectin ratio 
levels in rats compared to a group that only received a high-fat 
diet. HFCR also reduced lipid peroxidation, normalized adipo-
cyte size and morphology, reduced fatty liver, and lowered the 
expression of  inducible nitric oxide synthase, cyclo-oxygenase-2, 
Nrf2, and heme oxygenase-1 in the liver. In addition, HFCR re-
duced the expression of  manganese superoxide dismutase (Mn-
SOD) and C-reactive protein in adipose tissue. These findings 
suggest that HFCR may mitigate oxidative stress, inflammation, 
and adverse lipid profiles induced by a high-fat diet [124]. 

Aging is intricately linked to various chemicals and signaling 
pathways that maintain cellular homeostasis and health. Disrup-
tion of  these pathways can lead to imbalanced signaling and the 
activation of  substances that accelerate the aging of  cells. Severe 
damage may cause apoptosis or initiate processes that contribute 
to tumor development [125]. Key signaling pathways involved in 
aging include sirtuins, AMPK, fork head box O (FOXO) tran-
scription factors, IGF-1, phosphatidylinositol 3-kinase (PI3K)/
Akt, and mTOR. Dietary interventions such as calorie restric-
tion, protein restriction, and a low protein/high carbohydrate 
diet can modulate these pathways, potentially inhibiting the IIS 
pathway. Reduced Akt activity inhibits mTOR and activates 
FOXO, whereas calorie restriction can increase the cellular 
adenosine monophosphate (AMP)/ATP ratio and the NAD+/
NADH ratio, thereby activating AMPK and sirtuins [126]. 

Sirtuins have a crucial role in AMPK activation through a 
positive feedback loop. By phosphorylating and deacetylating, 
AMPK and sirtuins activate FOXO and peroxisome prolifera-
tor-activated receptor gamma coactivator 1-alpha (PGC-1α), re-
spectively. PGC-1α also activates FOXO, increasing the produc-
tion of  essential antioxidant enzymes and pathways involved in 
autophagy and mitophagy. PGC-1α also promotes the transcrip-
tion of  numerous critical genes involved in stress resistance, fatty 
acid oxidation, and mitochondrial biogenesis pathways. These 
interconnected pathways, facilitated by positive feedback loops 
including AMPK, sirtuins, FOXO, and PGC-1α, orchestrate a 
coordinated response, broadening the spectrum of  potential 
health outcomes [126].

The role of  IF in delaying aging in obesity involves the mod-
ulation of  various signaling pathways and substances. Dietary 
interventions, such as IF and restriction diets, have been shown 
to mitigate aging by enhancing the activity of  AMPK, sirtuin 1, 
PGC-1α, and FOXO [12]. Activating the AMPK/SIRT1 path-
way in the liver and white adipose tissue can reduce obesity, im-
prove thermogenesis, and suppress inflammation, as demonstrat-
ed in a study involving male C57BL/6 mice fed a high-fat diet 
to induce obesity. Following 4 weeks of  short-term mild calorie 
restriction therapy, improvements were observed in hepatocyte 

fluences GH levels [63]. The ability of  IF to lower HbA1c, body 
weight, and total daily insulin dose suggests its potential as a ben-
eficial treatment option for individuals with type 2 diabetes who 
are inadequately managed and undergoing insulin therapy [108]. 
In addition, IF has been shown to increase plasma adiponectin 
levels while decreasing leptin and resistin levels by stimulating the 
parasympathetic nervous system [96,100]. By regulating glucose 
and insulin levels, IF can contribute to the management of  gly-
cemic profiles and obesity [96,109]. According to another study, 
fasting may effectively address hyperandrogenism in women with 
PCOS by improving menstruation and fertility. However, it may 
reduce the level of  androgens in men, potentially affecting their 
libido and metabolic health [74,110].

The effect of IF on other systems 

Degeneration of  the pulmonary, renal, and gastrointestinal sys-
tems is also associated with aging [75,111–113]. Obesity exacer-
bates the risk of  respiratory tract diseases owing to its mechanical 
and inflammatory effects. In addition, obesity increases the risk 
of  developing various gastrointestinal conditions, including func-
tional gastrointestinal disorders, inflammatory bowel disease, 
pancreatitis, and gastrointestinal cancer [113–116]. Although 
the effect of  IF on aging and obesity in these three systems is still 
being explored, evidence suggests its potential benefits. 

IF has shown promise in preventing and delaying the progres-
sion of  diabetic nephropathy, offering potential mechanisms for 
reducing renal injury in diabetic nephropathy [117]. In addition, 
fasting has been found to activate fatty acid oxidation, enhancing 
intestinal stem cell function during homeostasis and aging, poten-
tially serving as a strategy for promoting intestinal regeneration 
[118]. However, studies have shown that IF did not significantly 
change spirometric data in male patients with stable chronic ob-
structive pulmonary disease, nor did it affect the severity of  asth-
ma and spirometric findings in patients with moderate to severe 
asthma. Nevertheless, fasting can be considered safe for patients 
with asthma [119,120]. 

An intriguing finding is that age and obesity affect the risk and 
severity of  COVID-19 [115,121]. According to a recent study, IF 
could serve as a supplemental therapy to reduce the risk of  de-
veloping chronic diseases and may hold promise in the treatment 
of  infectious diseases like COVID-19. Further investigation is re-
quired to determine the potential benefits of  IF for respiratory 
system performance [122].

Essential molecules and signaling pathways  

A recent study showed that IF influences the expression of  cir-
culatory miRNAs, epigenetic modulators crucial for intercellular 
communication. Specifically, a TRE regimen had differential ef-
fects on circulatory miRNA expression in older overweight adults 
[123]. The researchers identified 14 circulatory miRNAs that 
were differentially expressed before and after the TRE regimen. 
The downregulated miRNA targets suggested increased expres-
sion of  genes such as phosphatase and tensin homolog (PTEN), 
tuberous sclerosis 1 (TSC1), and Unc-51-like kinase 1 (ULK1), 
which may inhibit cell development and activate cell survival 
pathways, thereby promoting healthy aging [123].

By minimizing the generation of  ROS and inflammation, IF 
can extend life and improve health at the cellular and molecu-
lar levels. ROS have been found to affect redox status through 
activating transcription factors and apoptosis. Long-term IF has 
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extensively studied in obese populations. ADF, for instance, has 
demonstrated improvements in aging-related physiological and 
molecular markers in healthy, non-obese adults [8]. Periodic fast-
ing has been associated with reduced cardiovascular risk factors 
and substantial weight loss, including decreased obesity-related 
parameters such as abdominal circumference and blood pressure 
[49]. In addition, eTRE is able to modify autophagy indices, 
aging-related processes, the circadian rhythm, and 24-h glucose 
levels [54]. Therefore, further research is required to identify the 
most effective type of  IF for combating early aging in obese in-
dividuals.

Individual responses to IF can vary significantly based on fac-
tors such as physiology, current health status, dietary preferences, 
and environmental factors. Therefore, it is essential to choose an 
IF regimen that takes into account each person's unique circum-
stances. Further sophisticated phenotypic and genotypic research 
is required to better understand the molecular mechanisms un-
derlying the effects of  IF on delaying aging [51]. In addition, as 
IF can change affect the timing and levels of  hormone release, 
consideration should be given to any potential adverse effects 
when incorporating it into a dietary regimen, particularly for in-
dividuals with specific health conditions [135].

Policy recommendation 

The WHO provides comprehensive guidelines for addressing 
obesity, aiming to improve overall population nutrition and diet 
quality, as well as the governance of  the food system, to ultimate-
ly enhance health and well-being. These guidelines include creat-
ing environments that promote access to nutritious food and bev-
erages, advocating for the benefits of  a healthy diet throughout 
life, particularly for the most vulnerable groups, and supporting 
health systems to promote healthy dietary patterns [136]. 

Furthermore, the Centers for Disease Control and Prevention 
(CDC) emphasizes that obesity is a multifaceted issue that re-
quires a diversified approach. Collaboration among policy mak-
ers, state and local organizations, businesses, schools, community 
leaders, healthcare professionals, and individuals is essential to 
create an environment that encourages healthy lifestyles [137].

CONCLUSION

Obesity can accelerate the onset of  aging, manifesting through 
various markers such as intercellular communication, telomere 
attrition, dysregulated nutritional signaling, disrupted protein 
homeostasis, mitochondrial dysfunction, cellular senescence, 
and stem cell disorders. This early aging induced by obesity may 
predispose individuals to future degenerative diseases and health 
complications. Hence, there is a pressing need for simple, safe, 
and effective treatment options to address this issue. In recent 
years, IF has emerged as a promising approach with numerous 
benefits. IF has the potential to mitigate obesity-related early 
aging through its influence on molecular and cellular pathways, 
effectively regulating various body systems. By modulating key 
regulatory pathways such as sirtuins, PGC-1α, IIS, PI3K/Akt, 
FOXO, and mTOR, IF can help prevent the premature aging 
associated with obesity. Given its potential to promote healthier 
lifestyles and prevent obesity-related early aging, further research 
into the mechanisms and efficacy of  IF is warranted. 

steatosis, white adipogenesis, and energy expenditure, along with 
the increased expression of  sirtuin 1, PGC-1 α, and phosphory-
lated AMPK in subcutaneous white adipose tissue and hepatic 
tissues. In addition, calorie restriction may contribute to lower 
body weight, total serum cholesterol, fasting blood glucose, and 
insulin levels by reducing nuclear factor-kappa B (NF-KB) pro-
tein levels and endothelial nitric oxide synthase (eNOS) expres-
sion [127].

The deregulation of  mTOR is also a hallmark of  aging. 
mTOR, a serine/threonine protein kinase, controls protein syn-
thesis, cell proliferation, and cell growth. It integrates hormonal 
signals from the IIS pathway and signals from specific nutrients, 
particularly amino acids such as leucine [125]. IF is closely linked 
to mTOR and is recognized for its potential to extend lifespan. In 
healthy individuals, eTRE can modulate the expression of  genes 
that control the circadian clock in the morning and evening while 
upregulating longevity genes such as mTOR and sirtuin 1 in the 
morning. Autophagy-related genes also exhibit increased expres-
sion in the morning and evening [55]. In a study involving obese 
rats fed a high-fat diet, calorie restriction was found to reverse 
alterations in skeletal muscle growth signaling regulators induced 
by obesity. Calorie restriction mitigated the effects of  obesity on 
the lipogenic protein sterol regulatory-element binding protein 
1 (SREBP1), attenuated mTORC1 hyperactivation, reduced sig-
naling through extracellular signal-regulated protein kinases 1 
and 2 (ERK1/2), and induced the expression of  negative growth 
regulators such as regulated in development and DNA damage 
responses 1 (REDD1) and cleaved caspase 3 in skeletal muscle, as 
evidenced by Western blot analysis [128].

FOXO is a crucial regulator of  metabolic homeostasis, redox 
balance, and stress response. It responds to various factors, in-
cluding growth hormone levels, oxidative and genotoxic stress, 
and diminished nutritional reserves. FOXO exerts its effects by 
enhancing the activity of  antioxidants such as MnSOD, catalase, 
and manganese. Moreover, FOXO-mediated activation of  PGC-
1α affects various cellular processes, including apoptosis, inflam-
mation, cellular resistance to stress, proteostasis, autophagy, mi-
tophagy, and stem cell activity [126,129–131]. 

Four distinct types of  FOXO have been identified in mam-
mals: FOXO1, FOXO3, FOXO4, and FOXO6. It is believed 
that FOXO3 is particularly implicated in the aging process. 
Calorie restriction has been shown to upregulate numerous an-
ti-aging genes in human skeletal muscle by activating FOXO3, 
including those involved in antioxidant defense, DNA repair, and 
autophagy. In addition, PGC-1α, crucial in energy regulation, 
can interact with FOXO proteins [126]. FOXO3a promotes the 
expression of  human telomerase reverse rtranscriptase (hTERT), 
an essential regulator of  telomerase activity in aging, by acti-
vating c-MYC and extending the lifespan of  human fibroblasts 
[132,133]. In differentiated 3T3-L1 adipocytes, FOXO3a may 
also modulate autophagy, potentially influencing lipid accumu-
lation and inflammation in obesity [134]. Further research is re-
quired to elucidate the multifaceted roles of  FOXO3a, which can 
both counteract aging and contribute to age-related conditions 
such as obesity.

Future directions 

Investigating the relationship between obesity-related premature 
aging and intermittent fasting (IF) remains an important area 
of  research. Although some forms of  IF have shown promise 
in attenuating aging and obesity, not all types of  IF have been 
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