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ABSTRACT
Ischemia/reperfusion injury (IRI) is a common cause of  kidney damage, characterized by oxidative stress and inflam-
mation. In this study, we investigated the potential protective effects of  IAXO-102, a chemical compound, on experi-
mentally induced IRI in male rats. The bilateral renal IRI model was used, with 24 adult male rats randomly divided 
into four groups (N=6): sham group (laparotomy without IRI induction), control group (laparotomy plus bilateral IRI 
for 30 minutes followed by 2 hours of  reperfusion), vehicle group (same as control but pre-injected with the vehicle), 
and treatment group (similar to control but pre-injected with IAXO-102). We measured several biomarkers involved 
in IRI pathophysiology using enzyme-linked immunosorbent assay (ELISA), including High mobility group box1 
(HMGB1), nuclear factor kappa b-p65 (NF-κB p65), interleukin beta-1 (IL-1β), interleukin-6 (IL-6), tumor necrosis 
factor-α (TNF-α), 8-isoprostane, Bcl-2 associated X protein (BAX), heat shock protein 27 (HSP27), and Bcl-2. Statisti-
cal analysis was performed using one-way ANOVA and Tukey post hoc tests. Our results showed that IAXO-102 sig-
nificantly improved kidney function, reduced histological alterations, and decreased the inflammatory response (IL-1, 
IL-6, and TNF) caused by IRI. IAXO-102 also decreased apoptosis by reducing pro-apoptotic Bax and increasing 
anti-apoptotic Bcl-2 without impacting HSP27. In conclusion, our findings suggest that IAXO-102 had a significant 
protective effect against IRI damage in the kidneys.
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INTRODUCTION

Ischemia-reperfusion injury (IRI) is a significant contributor 
to chronic kidney disease (CKD) and related mortality. Hypoten-
sion, sepsis, and surgical protocols [1,2] are among contributing 
factors. Pathological mechanisms of  IRI include inflammation 
and oxidative stress. The prevalence of  chronic kidney disease in 
recent years has led to a large number of  kidney transplants being 
performed [3-5]. Multifunctional compounds with antioxidant, 
anti-inflammatory, and anti-inflammatory capabilities serve as 
the best defenses in cases of  kidney damage. The protective prop-
erties of  antioxidants can be explained by their ability to restore 
intracellular processes related to oxidative damage kinetics [6,7]. 
In addition, antioxidant therapy can protect against the oxidative 

damage caused by infrared radiation. Antioxidant compounds 
have been found to restore intracellular processes related to oxi-
dative damage, potentially contributing to their protective prop-
erties [8-11]. Inflammation caused by ischemia-reperfusion inju-
ry (IRI) can lead to further renal damage, but protecting against 
this occurrence is possible [12,13]. Pro-inflammatory cytokines, 
such as tumor necrosis factor (TNF-), interleukin-1 (IL-1), and 
interleukin-6 (IL-6), play a primary role in renal disease [13-16]. 
Moreover, IRI is less common in TLR4 knockout mice or kid-
neys from donors with TLR4 loss of  function, which is associated 
with a lower concentration of  pro-inflammatory cytokines in the 
kidney and better immediate graft function [17-21]. This study 
aimed to investigate the nephron-protective effects of  IAXO-102 
on renal ischemia-reperfusion injury in rats by measuring the 
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following parameters: neutrophil gelatinase-associated lipocalin 
(NGAL), nuclear factor kappa B-p65 (NF-κB), interleukin-1 beta 
(IL-1β), B-cell lymphoma-2-associated X protein (BAX), interleu-
kin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), high mobili-
ty group box 1 protein (HMGB-1), B-cell lymphoma 2 protein 
(Bcl-2), heat shock protein 27 (HSP27), and 8-isoprostane.

MATERIAL AND METHODS

Animals 

In this study, 24 adult male Wistar Albino rats aged more 
than 20 weeks and an average weight of  300±50 g were used. 
All animals had free access to food and water and were subjected 
to a 12:12 light-dark cycle. The temperature and humidity were 
controlled at 25 °C and 60-65%, respectively. The rat handling, 
experiments, and tests complied with the Ethical Conduct for 
Use of  Animals guidelines and regulations. The animals were 
housed at the animal house of  the College of  Sciences, Universi-
ty of  Kufa. The materials were procured from Merck Chemical 
Companies (Kufa University).

Experimental design

In this study, Wistar Albino rats were randomly selected and 
divided into four groups, each consisting of  six rats, subjected 
to different handling procedures. The sham group served as the 
negative control and underwent no IRI procedure. The control 
group underwent bilateral renal ischemia by clamping the renal 
pedicles for 30 minutes, serving as the positive control. The ve-
hicle-treated group received an intraperitoneal injection of  10% 
ethanol, 40% PEG300, 5% tween-80, and 45% saline (the vehi-
cle for IAXO-102) one hour prior to the production of  bilateral 
renal ischemia-reperfusion damage. Rats in the last group were 
intraperitoneally administered 3 mg/kg of  IAXO-102 an hour 
before establishing bilateral ischemia-reperfusion damage.

Sample collection and preparation

Serum tests

After the reperfusion period, blood was collected via cardiac 
puncture from each experimental rat using disposable syringes. 
Approximately 3-5 ml of  blood was collected and transferred to 
gel tubes without anticoagulant, then left at 37°C for 20 minutes. 
After centrifuging the tubes at 3000 rpm for 10 minutes, the se-
rum was collected [22]. The serum samples were then divided 
into aliquots, one of  which was used to measure serum urea, cre-
atinine, and neutrophil gelatinase-associated lipocalin (NGAL) 
levels.

Renal tissue examination
Parts of  the left kidneys were fixed in 10% neutral buffered 

formalin from sham, control, vehicle, and drug-treated rats. The 
fixed tissues were processed using an automated Leica tissue pro-
cessor, which dehydrates the tissues with serially increasing etha-
nol concentrations, clears the tissues with xylene to form ethanol 
and some fats that impede wax infiltration, and finally prepares 
paraffin-embedded tissue blocks. These blocks were then cut into 
tissue sections with a thickness of  about 4 micrometers using a 
microtome. The tissue sections were then mounted on slides and 
later stained with H&E dyes to assess renal tissue damage.

Statistical analysis

The Statistical Analysis System (SAS) version 9.1 was used 
for data analysis. To determine significant differences in ELISA 
results, one-way ANOVA and the Tukey post hoc test were em-
ployed. Post hoc tests are crucial in ANOVA analysis. In creating 
the figures, SPSS version 23 was used. A p-value of  less than 0.05 
was considered statistically significant. 

RESULTS 

Effect of IAXO-102

In this study, four groups, each consisting of  six rats, were 
enrolled to compare different parameters among the studied 
groups and assess the effects of  IRI and IAXO-102 on inflam-
matory mediators and HMGB1. There was a significant differ-
ence in HMGB1 levels among the four studied groups. However, 
the most important finding was that the IAXO-102 group had 
significantly lower HMGB1 levels than all other groups (P<0.05), 
as illustrated in Figure 1.

Effect of IRI, IAXO-102 on NFκp65 

The mean NFκp65 levels were significantly lower in the 
IAXO-102 group compared to all other groups (P<0.05), except 
for the sham group (P>0.05) (Figure 2).

Effect of IRI, IAXO-102 on IL-1β

There was a significant difference in IL-1β2 levels among 
the studied groups (P<0.001). The sham group had the lowest 
levels, significantly lower than all other groups (P<0.05 for all 
comparisons). On the other hand, IL-1β levels were significantly 
lower in the treatment IAXO, vehicle IAXO, and control groups 
(P<0.001) (Figure 3). 

Effect of IRI, IAXO-102 on IL-6

The mean IL-6 levels in the sham group were significantly 
lower compared to the control and vehicle IAXO groups, where-
as the treatment IAXO group had a significantly higher level of  
IL-6 than all other groups (P<0.05). IL-6 levels were significantly 
lower than those in the control and the vehicle IAXO groups 
(P=0.001), except for the treatment IAXO group, which had an 
elevated IL-6 level (P<0.05), as shown in Figure 4. 

Effect of IRI, IAXO-102 on TNF-α

The mean TNF-α levels were significantly lower in the 
IAXO-102 group than in all other groups (P<0.05), except for 
the sham group (P>0.05) (Figure 5).

Effects of renal IRI, IAXO-102 
on the oxidative stress marker 8-isoprostane

There was a significant overall difference in the mean 
8-isoprostane levels among the groups (P=0.001), as shown in 
Figure 6. The control group had significantly lower levels of  
8-isoprostane compared to the other groups, and the treatment 
IAXO group also had significantly lower levels than the vehicle 
IAXO group (P<0.05).
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Figure 1. Mean serum levels of HMGB1.
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Figure 2. Mean serum levels of NFκp65.
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Figure 3. Mean serum levels of IL-1β.
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Figure 4. Mean serum levels of IL-6.
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Figure 5. Mean serum levels of TNF-α.
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Figure 6. Mean serum levels of 8-Isoprostane.
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Effects of renal IRI, IAXO-102 on apoptotic mediators

Effect of renal IRI, IAXO-102 on Bax
Significant differences were observed in the mean Bax levels 

among the four groups (P value <0.001), as shown in Figure 7. 
The Sham group had the lowest level of  Bax, while the con-
trol group and Vehicle IAXO had higher levels. The treatment 
IAXO group had a significantly lower level of  Bax compared to 
the control and Vehicle IAXO groups (P<0.05). 

Effect of renal IRI, IAXO-102 on HSP27
The mean level of  HSP27 was significantly lower in the 

sham group than in all other groups except for the control group 
In contrast, the IAXO-102 group had a significantly higher level 
of  HSP27 than the control group (P<0.05) but not significantly 
different from the other groups (Figure 8).

Effect of renal IRI, IAXO-102 on Bcl-2
The mean levels of  Bcl-2 were significantly higher in the 

treatment group than in all other groups, except for the sham 
group (P<0.05), as shown in Figure 9. 

DISCUSSION

The reperfusion process following ischemic injury can ex-
acerbate tissue damage by activating innate immune responses 
and cell death pathways [23]. This study aimed to assess the ef-
fect of  IAXO-102 on renal ischemia-reperfusion injury using a 
rat model. We analyzed various experimental studies simulating 
ischemia-reperfusion (I/R) kidney damage in laboratory animals.

Effects of renal IRI, IAXO-102 on 
inflammatory mediators

Effect of renal IRI, IAXO-102 on HMGB1
HMGB1 is known to play a crucial role in the early stages of  

I/R injury by binding to RAGE and triggering the activation of  
pro-inflammatory pathways, leading to increased ischemia inju-
ry. Thus, blocking HMGB1 may provide a potential therapeutic 
strategy for I/R injury [24]. In this experimental study, we com-
pared the levels of  HMGB1 in different groups and found that 
pretreatment with IAXO-102 significantly reduced the level of  
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Figure 8. Mean serum levels of HSP27 
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HMGB1, suggesting that IAXO-102 could be used as a stand-
alone therapy for I/R injury. 

Effect of renal IRI, IAXO-102 on NF-κB
The mean NF-κB levels were significantly reduced in the 

pretreatment group, IAXO-102. It is widely recognized that the 
inhibition of  the NF-κB pathway has the potential to protect 
against ischemia/reperfusion injury, although the exact mecha-
nism of  action is not fully understood [25,26]. Nonetheless, the 
expression of  the inflammatory gene, including IL-1β, IL-6, IL-
10, and TNF-α, in addition to adhesion factors, can be promoted 
by NF-κB activation [26]. The increased expression of  adhesion 
molecules attracts more neutrophils and lymphocytes, leading to 
further injuries to vascular endothelium cells. Therefore, the use 
of  an anti-inflammatory agent may have a promising protective 
effect on renal IRI, as demonstrated by the significantly reduced 
NF-κB levels observed in all three treatment modalities in our 
study [25]. 

Effect of IAXO-102 on IL-1β2, IL-6 and TNFα
Previous experimental studies have demonstrated that the 

levels of  IL-12 and TNF-α increase after 30 minutes of  ischemia 
followed by 2 hours of  reperfusion in rats, resulting in significant 
changes in endothelial function and contributing to endotheli-
al dysfunction. In the present study, IL-12 and TNF levels were 
significantly lower in the treatment group and elevated in the 
vehicle IAXO, control, and sham groups after IRI. [26,27]. An-
other study in a rat model showed that the TNF-α gene level was 
highly elevated in injured kidney tissues in rats that underwent a 
right kidney nephrectomy and ischemia in the left kidney for 45 
minutes, followed by reperfusion [28]. Moreover, two other ex-
perimental studies on a rat model showed that the IL-1β level was 
increased in injured renal tissues after 30 minutes of  ischemia, 
followed by 2 hours of  reperfusion [29,30]. Based on the experi-
mental studies, it has been shown that spinal cord injuries lead to 
the initiation of  local inflammatory processes and the formation 
of  inflammatory cytokines such as TNFα and IL-1β. In contrast, 
other studies have reported that upregulation of  nuclear factor 
erythroid 2-related factor (Nrf2/HO-1) can promote a protec-
tive effect against hepatotoxicity caused by cyclophosphamide 
through the attenuation of  oxidative stress, inflammation, and 
cell death signaling [31]. 

In the current study, pretreatment with IAXO-102 sig-
nificantly reduced IL-6 levels compared to the control and ve-
hicle IAXO groups (P<0.001). These findings correspond with 
previous studies that reported IL-1 as a stimulus for producing 
pro-inflammatory cytokines such as TNF-alpha and IL-6. Fur-
thermore, the C5a component of  the complement system was 
found to activate the production of  MCP-1 chemokine, IL-1, 
TNF-alpha, and IL-6 cytokines. IL-1 also induces the expression 
of  adhesion molecules on endothelial cells, promoting cell infil-
tration, and stimulates the production of  prostaglandins and oth-
er inflammatory mediators, such as TNF-alpha and IL-6, by tu-
bular epithelial cells. Therefore, IAXO-102 may act through an 
anti-inflammatory mechanism to reduce or prevent IRI damage 
by inhibiting the production of  IL-6 and other pro-inflammatory 
cytokines [32,33].

Effect of IRI, IAXO-102 
on the oxidative stress marker 8-isoprostane

In this experimental rat model study, we reported a statis-
tically significant overall difference in the mean 8-Isoprostane 
levels among the groups (P=0.001). The treatment IAXO group 
had significantly lower levels of  8-isoprostane, so we can hy-
pothesize that IAXO can improve the outcome after ischemia/
reperfusion injury and reduce its adverse effect. Previous studies 
have demonstrated that during IRI, the burst of  reactive oxygen 
species (ROS) can trigger inflammation and tubular cell injury. 
Therefore, reducing oxidative stress, as assessed by 8-isoprostane, 
may help prevent damage in IRI [34]. Moreover, data in other 
experimental studies demonstrate that IAXO-102 treatment is a 
negative regulator of  Angiotensin II-driven inflammation, and 
TLR4 signaling is the target by which IAXO-102 exerts its effect 
and attenuates inflammation [35,36].

Effect of IRI, IAXO-102 on the Apoptotic mediators

Effect of IAXO-102 on Bcl-2 and Bax

Pretreatment with IAXO-102 in our experimental study sig-
nificantly reduced the levels of  Bcl-2 compared to other groups. 
These findings are consistent with previous research that demon-
strated a significant increase in Bax levels and a decrease in Bcl-2 13 
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levels in the control group compared to the sham group follow-
ing 30 minutes of  renal ischemia and 72 hours of  reperfusion 
[37,38]. Bax and Bcl-2 are known to play crucial roles in reg-
ulating apoptosis, even though additional Bcl-2 members most 
likely play "supportive functions" in cell death. Additionally, tar-
geting either or both of  these proteins can modify the outcome 
of  stress-induced cell death [39].

Effect IRI, IAXO-102 on HSP
IAXO-102 pretreatment significantly increased the levels 

of  heat shock protein compared to the other groups, although 
statistical significance was not reached in the other groups, pos-
sibly due to the limited sample size. Heat shock proteins (HSPs) 
have been shown to have potent anti-apoptotic effects, blocking 
various steps in the cell death pathway and inducing cytoprotec-
tion in vitro or in vivo [39]. Therefore, the use of  IAXO-102 for 
pretreatment may be critical in this mechanism. Other research 
has shown that essential chemicals involved in cell survival and 
proliferation are upregulated, and miRNA expression in I/R al-
ters apoptosis (e.g., Bcl-2, HSP). miRNA expression profiling has 
been used to identify differential regulation of  numerous miR-
NAs in several organs after I/R to modulate genes involved in 
cell death. HSP also prevents Bax from activating [40].

CONCLUSION

The study found that IAXO-102 has a protective effect 
against IRI damage, suggesting its potential as a therapeutic 
intervention.
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