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ABSTRACT
Myopathy is a disease characterized by muscle dysfunction in general and may be associated with genetics, medi-
cation such as statins, or inflammation. In 2019, an epidemic viral infection (SARS-CoV-2 virus) that invaded most 
countries worldwide appeared and caused acute respiratory disease. Consequently, patients had to take a group of  
drugs for a relatively long treatment period. According to several studies, there was an increase in the cases of  mus-
cular disorders due to several factors. This study aimed to (1) investigate the relationship between COVID-19 and 
myopathy and (2) identify the causes and prevention methods. A systematic review was conducted, analyzing sever-
al articles from the following databases: ResearchGate, Medline, DOAJ (The Directory of  Open-Access Journals), 
PubMed, and Google Scholar. After performing the search and filtering the results, we included 61 articles. There was 
a strong relationship between COVID-19 and myopathy, especially in patients admitted to the ICU department, due 
to medication or neurological dysregulation with multiorgan dysfunctions such as polyneuropathy, peripheral nerve 
involvement, dysautonomia, Guillain-Barré syndrome, and many others.
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INTRODUCTION

Myopathies are neuromuscular diseases characterized by 
the disruption of  the structure or development of  the striated 
skeletal muscle, distinguishing two categories: genetic (hereditary) 
myopathies and acquired myopathies [1, 2]. The first data in the 
literature referred to hereditary myopathies (MH) in 1882, when 
Edward Meryon described granular degeneration in postmortem 
muscle [3].

Idiopathic inflammatory myopathy (IIM) directly affects 
skeletal muscle and can sometimes affect the skin and other or-
gans to varying degrees. The weakness associated with critical 
illness is a general term that describes neuromuscular disorders 
associated with serious illnesses, such as COVID-19 [4, 5]. It is 
divided into three groups depending on the site of  involvement: 
critical disease polyneuropathy (CIP), serious disease myopathy 
(CIM), and critical disease polyneuromyopathy (CIPNM)[6, 7].

Although the most common clinical manifestations caused 
by the SARS-CoV-2 virus described in the literature are respira-

tory symptoms, fever, and gastrointestinal problems, neurological 
symptoms such as headache, anosmia, myalgia, insomnia, and 
confusion were also reported [8]. 

Intensive care units (ICUs) represent one of  the important 
steps in the comprehensive patient care system, and their main 
objective is the diagnosis and treatment of  patients in critical sit-
uations, that is, with very deteriorating health conditions and a 
high risk of  suffering severe complications in the short and me-
dium term [9, 10].

The consequences of  admission to the ICU may result from 
different aggressive treatments or secondary to other aspects of  
the same disease, such as fatigue, asthenia, weight loss, cognitive 
deficits, myopathy, and polyneuropathy [11, 12].

The current review aimed to investigate the relationship be-
tween myopathy and COVID-19 in critical patients hospitalized 
in the ICU, observing the conditions that cause several functional 
deteriorations in these patients [12, 13]. This is especially rele-
vant given the current circumstances, constituting a relevant top-
ic for future research.
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MATERIAL AND METHODS 

Search strategy

We conducted an unstructured search on PubMed, 
Google Scholar, and Redalyc using the following keywords: 
"COVID-19", "myopathies", "intensive care unit", "critical ill-
ness", and "consequences". A total of  225 related articles were 
retrieved, and emphasis was placed on original articles, including 
systematic reviews, case studies, and experimental studies. We re-
jected 87 publications prior to 2012, resulting in 171 articles in 
the sampling phase, of  which 39 were not relevant or duplicated, 
for a total of  132 to choose from. Finally, 61 of  the current and 
best-documented publications were selected (Figure 1). 

LITERATURE REVIEW

Even though the differential diagnoses of  CIM, CIP, and 
CIPNM are indistinguishable, there are significant differences in 
their pathogenesis. CIP is a sensory axonal polyneuropathy char-
acterized by the loss of  individual nerve fibers. In contrast, CIM 
is characterized by a decrease in thick myofilaments, which leads 
to the death of  skeletal muscle myofibers [12].

CIP has worse results compared to CIM [12, 13]. Despite 
significant advances in improving knowledge of  the mechanisms 

underlying these disorders, the period and duration of  stay in the 
ICU are indicators of  important long-term results [13, 14].

Angiotensin-converting enzyme (ACE) 
and its rule in the muscle function

One of  the major hemostatic functions in the body is the 
renin-angiotensin aldosterone system (RAAS). The juxtaglomer-
ular apparatus produces renin that converts angiotensinogen to 
angiotensin I. This angiotensin I is also affected by the enzyme 
angiotensin-converting enzyme (ACE) to angiotensin II convert-
ing enzyme II which either binds directly to its AT-1 receptor 
(and produces a harmful effect) or is converted to angiotensin 1-7 
by the enzyme ACE 2 (Figure 2).

ACE2 receptors serve as a self-protective fragment, main-
tain biological homeostasis, and prevent the progression of  nu-
merous diseases. The interaction of  SARS-Cov2 with ACE2 
not only promotes virus entrance into the human body but also 
modifies the protective activity of  ACE2 in affected organs. As a 
result, it is critical to reconsider the role of  ACE2 in modifying 
organ function and human health [15].

Skeletal muscle is vital for motor system modulation as well 
as metabolic homeostasis. The ACE-Ang II-AT1 axis contributes 
to muscle pathogenesis by promoting muscle activity and glycae-
mic control problems, i.e., muscle atrophy followed by abnormal 
muscular remodeling or insulin resistance [15, 16].
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Figure 1. Flow diagram of the articles selection.
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Previous studies in striated muscles emphasize the protec-
tive effect of  Ang 1-7 in pathological remodeling and that it rais-
es blood glucose through insulin resistance [16–18]. Riquelme 
et al. studied the role of  ACE2 in existing pathological muscle 
modulation, its effect and protein levels, and its variation linked 
to genetic factors leading to muscular dysfunction. This aspect 
could imply a compensatory mechanism of  the RAAS front to 
muscular dysfunctions [19, 20].

Pathophysiological mechanisms of 
muscle weakness in COVID-19

Myopathy can be caused by several factors, such as direct vi-
ral damage to skeletal muscle or secondary disorders, such as mo-

tor neuron involvement, malnutrition, the inflammatory response 
of  CIM, prolonged bedding, and insufficient O2 intake [21, 22].

Atrophy and fibrosis are caused by pathological muscle re-
modeling of  skeletal muscle, secondary to endothelial dysfunc-
tion due to CIM, the effects on systemic circulation, and the RAS 
system in the musculature [23].

Muscle deterioration is caused by inequity in cellular and 
fiber structure and metabolism, especially by suppressing the 
IGF-1-AKT-mTOR pathway by altering the synthesis of  mus-
cle proteins caused by Ang II, which can indirectly induce cel-
lular apoptosis. This damaged or atrophied muscle tissue di-
rectly influenced by Ang II is replaced by connective tissue that 
produces muscle fibrosis with a subsequent decrease in skeletal 
muscle [22, 23].

Figure 2. Angiotensin-converting enzyme 1,2 and its rule in COVID-19 ACE, AT-R angiotensin receptor, NEP- neprilysin, APA- Aminopeptidase A, 
APN- Aminopeptidase N.
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In summary, it can also be mentioned that SARS-COV2 can 
induce muscle atrophy through regulation of  the renin-angioten-
sin-aldosterone pathway (RAS) in interaction with other process-
es secondary to the hospitalization in the ICU (Figure 2) [23, 24]. 

Patients with COVID-19 and myopathy

During the COVID-19 pandemic, neuromuscular compli-
cations were evident [25]. Between 30% and 50% of  the ICU 
patients presented generalized neuromuscular weakness during 
their hospitalization that appears to be secondary to CIM and 
CIP or their combination, causing prolongation and increasing 
admission time and ventilation duration in the ICU [25, 26]. 

 Montalvan et al. (2020) stated that 36.4% of  patients had 
neurological manifestations that were directly related to the se-
verity of  the clinical symptoms of  COVID-19 [26]. Santos et al. 
(2018) identified that patients hospitalized longer in the ICU pre-
sented physical sequelae, such as myopathy, polyneuropathy, and 
musculoskeletal retraction [27]. Authors such as Santos and col-
laborators (2021) report that the advanced phase of  COVID-19 
was linked to severe peripheral nerve dysfunction, dysautonomia, 
and myopathy [26]. Muscle weakness due to immobility after the 
ICU has been considered the sequelae that mostly affects these 
patients' quality of  life and recovery time [28]. 

Other causes of myopathy in COVID-19 patients

Many patients suffering from COVID-19 require admission 
and an increased stay in intensive care units (ICU), so the likeli-
hood of  complications and the development of  CIM is highly 
possible [29].

Guillain Barré syndrome (GBS) and COVID-19

GBS is among the most common causes of  paralysis world-
wide, manifesting acute inflammatory polyradiculoneuropathy. 
Common symptoms include ascending symmetric weakness, pain-
ful paranesthesia, decreased or absent osteotendinous reflexes, al-
teration of  the cranial nerves, and in severe cases, even weakness 
of  the respiratory muscles can occur. It can present as a heteroge-
neous disease, and different variants have been reported [30, 31]. 

Abu-Rumeileh et al. (2021) reported 73 cases with classical 
GBS or its variants in patients diagnosed with COVID-19, sug-
gesting a notable increase during the pandemic [31]. Bagnato 
et al. assume that respiratory failure in patients with COVID-19 is 
secondary to the relationship between muscle weakness and viral 
lung infection [32]. 

Transverse myelitis and 
encephalomyelitis in COVID-19

Transverse myelitis leads to the destruction of  myelin from 
nerve cells, causing the interruption of  the messages sent by the 
spinal cord throughout the body through the peripheral nerves, 
causing pain, muscle weakness, paralysis, sensory problems, or 
dysfunction of  the bladder and intestine [33]. SARS-CoV-2 has 
clinical features that are not limited only to the respiratory tract 
but also compromise the nervous system. The search for indi-
rect and direct mechanisms involved in the complications and 
neurological manifestations reported in COVID-19 has been the 
subject of  studies by several authors, identifying possible mech-
anisms of  direct invasion of  SARS-CoV-2 into the CNS [34]. 
Thus, isolated cases of  encephalopathy, encephalitis, encepha-

lomyelitis, and hemorrhagic necrotizing encephalopathy, among 
others, have been described. [35, 36]

Cerebrovascular disease (CVD) and COVID-19

Related to the prothrombotic phenotype of  severe COVID, 
cerebrovascular events of  ischemia have been reported with an 
incidence that can reach up to 5% of  hospitalized patients [37].

Another mechanism mentioned is endothelial dysfunction; 
SARS-CoV-2 binds to and invades vascular endothelial cells 
through ACE2 in the endothelium, triggering the death of  in-
flammatory endothelial cells (pyroptosis) [34].

Diagnosis

CIP, CIM, and CIPNM are usually diagnosed during the 
recovery phase of  the disease. Although they all share common 
clinical signs, diagnosis also depends on the correct interpreta-
tion of  data related to clinical presentation and electrodiagnostic, 
with standard laboratory tests being insignificant [38].

 Flaccidity and usually symmetrical weakness are aspects 
present in CIP, CIM, and CIPNM; a potential differentiation fac-
tor may be the null or decreased response to sensitivity to pain, 
vibration, or temperature in those with CIP, while these functions 
would be present in CIM [35, 39]. 

Muscle atrophy is generally more evident in CIM, which 
is difficult to diagnose due to the condition of  critically ill pa-
tients. In awake patients, muscle strength can be assessed using 
the Medical Research Council (MRC) scale, which rates muscle 
weakness in six muscle groups, giving scores between 0 (no con-
traction) and 5 (normal force). The CIPNM is defined when the 
total CRF score is less than 48, having previously ruled out other 
causes of  weakness [39, 40].

Although laboratory testing is not required to detect criti-
cal illness-associated weakness (CIAW), plasma IL-6 was already 
reported as an important indicator of  membrane disruption in 
CIM [36]. GDF-15 is a stress-stimulated mediator of  major mus-
cle atrophy illnesses and is thought to be a promising candidate 
biomarker; however, additional research is needed to prove its 
utility [41, 42].

Needle electromyography can help clarify the diagnosis, ear-
ly recruitment and small amplitude polyphase waves in the differ-
ent affected muscles (biceps brachii muscles, rectus femoris, and 
anterior tibial), reduction of  the amplitude and duration of  the 
motor unit potential, and sometimes the presence of  fibrillations 
and fasciculations. 

Muscle biopsy in the case of  CIP demonstrates atrophy due 
to the denervation of  muscle fiber types 1 and 2. CIM describes 
myofiber atrophy, focal or diffuse loss of  thick filaments, angled 
fibers, fat degeneration, and necrosis [43].

With imaging techniques such as computed tomography 
and nuclear magnetic resonance imaging, the degree of  muscle 
loss and infiltration of  muscle by adipose tissue can be observed. 
It also allows the evaluation of  deeper muscle groups; however, 
some main disadvantages are high cost, radiation exposure, and 
the need to transport the patient out of  the ICU [37, 44]. 

Therapeutics

The treatment should minimize associated risk factors, symp-
tom care, and physical rehabilitation. Some authors argue that 
pharmacological treatments are not recommended to prevent 
or treat critical illness-associated weakness (CIAW). However, 
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euglycemia has improved some outcomes in critically ill patients. 
Insulin therapy greatly reduced CIP and CIM rates, including hos-
pitalization time by mechanical ventilation and mortality rate [45]. 

Functional electrical stimulation (FES) has been reported 
beneficial in patients who have not been admitted to the ICU, 
promoting increased muscle strength [44]. However, the results 
are discordant, so more and better studies are required to support 
their efficacy [42]. 

Performing passive and active mobilization and early anes-
thesia breaks can aid recovery, especially in patients admitted to 
the intensive care unit for COVID-19 [28, 42]. It is a relatively 
safe procedure with a low risk of  adverse events. [43] Cheung 
et al. (2021) report that early mobilization leads to a lower inci-
dence of  CIAW, improving functional capacity and increasing 
standing capacity [11]. The exercise protocols focused on trans-
fers (from the supine to sitting), walking, and cycle ergometry 
adjacent to the bed [37]. Zhou et al. (2021) mention that malnu-
trition is the leading cause of  "critical illness polyneuropathy", 
stressing the harmful effects of  parenteral nutrition in critically 
ill patients and supporting early enteral feeding [39]. McGlory 
et al. report that omega-3 fatty acid supplementation improves 
skeletal muscle anabolism [40] and has potent anti-inflammatory 
properties [41].

CONCLUSIONS

Myopathies are important in developing complications and 
sequelae associated with COVID-19 in critically ill patients ad-
mitted to the ICU. Among the most important neurological prob-
lems associated with COVID-19 and multisystem involvement 
are polyneuropathy, myopathy of  the critical patient, and the 
Guillan-Barré syndrome. There is a close relationship between 
myopathy and COVID-19, an aspect of  special importance in 
the current circumstances.
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