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ABSTRACT
Colorectal cancer (CRC) is one of  the most frequent types of  cancer, with high incidence rates and mortality globally. 
The extended timeframe for developing CRC allows for the potential screening and early identification of  the dis-
ease. Furthermore, studies have shown that survival rates for patients with cancer are increased when diagnoses are 
made at earlier stages. Recent research suggests that the development of  CRC, including its precancerous lesion, is 
influenced not only by genetic factors but also by epigenetic variables. Studies suggest epigenetics plays a significant 
role in cancer development, particularly CRC. While this approach is still in its early stages and faces challenges due 
to the variability of  CRC, it shows promise as a potential method for understanding and addressing the disease. This 
review examined the current evidence supporting genetic and epigenetic biomarkers for screening and diagnosis. In 
addition, we also discussed the feasibility of  translating these methodologies into clinical settings. Several markers 
show promising potential, including the methylation of  vimentin (VIM), syndecan-2 (SDC2), and septin 9 (SEPT9). 
However, their application as screening and diagnostic tools, particularly for early-stage CRC, has not been fully op-
timized, and their effectiveness needs validation in large, multi-center patient populations. Extensive trials and further 
investigation are required to translate genetic and epigenetic biomarkers into practical clinical use. 
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INTRODUCTION

The estimated number of  new cases of  colorectal cancer (CRC) 
in 2018 was 1.85 million, representing about 10% of  all cancers 
worldwide [1,2]. In 2018, 880,792 (9.2%) deaths were estimated 
to be attributable to CRC [2]. Recent data has revealed a con-
cerning trend in the incidence rate of  CRC, indicating a global 
rise from 1990 to 2019 [3,4]. CRC typically develops from a 

precancerous lesion known as an adenoma through a multi-step 
process termed the 'adenoma-carcinoma sequence'. This trans-
formation can span 10 to 15 years [5]. This extended duration 
offers a crucial window for screening and early diagnosis of  
the precancerous lesion before its transformation into cancer 
(Figure 1) [6]. The improvement of  screening programs could 
increase detection and decrease the incidence rate of  advanced 
cancer, which also improves overall cancer management, prog-
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nosis, and death rates related to CRC [7,8]. Moreover, when 
detected in the early phase of  the disease and combined with 
prompt therapy, the 5-year survival rate has a better outcome 
of  more than 90% in the localized stage compared with 10% in 
patients with metastasis [9]. As a result, it is essential to develop 
a procedure that can increase the number of  people who under-
go screening, is easy to implement on a massive scale, and has 
high levels of  sensitivity and specificity.

Screening is recommended for individuals with a moderate 
risk of  CRC, typically between 50 and 75 [10]. Currently, there 
are numerous ways for detecting colorectal cancer, including 
invasive methods such as flexible sigmoidoscopy and colonos-
copy and less invasive approaches such as guaiac fecal occult 
blood test (gFOBT) and fecal immunochemical test (FIT) [11]. 
Despite its reliability, colonoscopy is less favored due to high-
er costs, discomfort, potential complications, and lower patient 
compliance [12]. Studies indicate a preference among patients 
for less invasive screening methods [13], underscoring the need 
for an ideal screening approach that balances invasiveness with 
high specificity and sensitivity.

One of  the well-established pathways in CRC begins with a 
mutation in the adenomatous polyposis coli (APC) gene [14]. 
After this event, mutations occur in the rat sarcoma viral on-
cogene homolog (RAS) and tumor protein 53 (TP53) genes and 
other genes [15]. In addition, extensive research has demon-
strated the significance of  genetic and epigenetic changes in 
CRC carcinogenesis [16]. Based on this knowledge, many stud-
ies have recognized genetic and epigenetic alterations as poten-
tial new biomarkers for use in screening, diagnosis, and even 
predictive biomarkers of  therapy response throughout the past 
decade [17-19]. Their detection is possible in various biological 
samples, such as tissue, blood, stool, and urine. The goal of  

this review was to compile genetic and epigenetic markers with 
potential of  early detection and diagnosis both presently and in 
the near future.

The genetic and epigenetic mechanism in CRC 

Genetic and epigenetic changes were initially identified as in-
dependent CRC pathways. However, recent research suggests 
an interaction between these two CRC carcinogenesis pathways 
(Figure 1) [20]. Genetic mutations modify epigenetic regulation, 
allowing genomic instability and mutagenesis [21]. The epi-
genetic factors dysregulating genes involved in DNA mismatch 
repair (MMR) often result in genomic instability and dysregu-
lation of  genes involved in carcinogenesis (oncogenes and tu-
mor suppressor genes) [22,23]. CRC is a multifactorial disease, 
and numerous pathways have been studied. Among these, three 
prominent pathways have been widely reported. The first two 
are usually referred to as traditional pathways, namely chro-
mosomal instability (CIN) and microsatellite instability (MSI) 
[24,25]. The other pathway is the CpG island methylator phe-
notype (CIMP), also called the serrated pathway of  CRC [24–
26]. In addition, some of  these pathways might be complexly 
interconnected. Microsatellite instability and chromosomal in-
stability are commonly viewed as distinct mechanisms through 
which sporadic CRC develops, and it has been suggested that 
CIMP may be behind the development of  MSI and/or CIN 
[27]. CIN is often detected in the majority of  CRC cases [28]. 
CIN is reportedly characterized by aneuploidy and allelic loss 
at chromosome 18q (18q LOH) [29,30]. It is also characterized 
by KRAS activation, a well-known oncogene in CRC, as well as 
mutations that inactivate tumor-suppressor genes such as APC 
and TP53 [29,31]. MSI is caused by a reduction in DNA mis-

Figure 1. Proposed genetic and epigenetic biomarkers for potential use in CRC screening and diagnostic. 
Adapted from “Benign and malignant colorectal cancer”, by BioRender.com (2022). Retrieved from 
https://app.biorender.com/biorender-templates.
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Mutations in PIK3CA are often found in cancers located in the 
proximal colon and are associated with a high level of  CpG 
island methylator phenotype (CIMP) [51]. Moreover, PIKCA 
mutations correlate with mucinous differentiation, KRAS mu-
tations, and microsatellite instability [51,56]. Both in vivo and 
in vitro studies revealed that mutations in PIK3CA were related 
to resistance to first-line chemotherapy treatment [57]. In ad-
dition to PIK3CA and KRAS, the TP53 gene was reported to 
be altered in 43% of  CRC cases, and the remaining cancers 
frequently have reduced p53 activity due to mutations in other 
genes regulating p53 [58]. Under conditions of  cellular stress, 
the protein TP53 performs the role of  a transcription factor 
and is responsible for the initiation of  cell cycle arrest, senes-
cence, and apoptosis [59]. A meta-analysis reported that the 
diagnostic value of  serum p53 showed a pooled sensitivity of  
0.19 (95% CI, 0.18–0.21) and a pooled specificity of  0.93 (95% 
CI, 0.92–0.94) [60]. 

Allelic loss on chromosome 18q is an additional mutation 
that significantly impacts CRC, detected in up to 70% of  pri-
mary CRC cases, especially in the late stages [16]. Studies have 
also associated 18q loss of  heterozygosity (LOH) with poorer 
prognosis, underlining its clinical relevance [61]. The regions 
affected by LOH on chromosome 18q are believed to inactivate 
three distinct genes in CRC, including DCC, DPC4/SMAD4, 
and SMAD2 [62]. In addition, LOH has also been linked to liv-
er metastasis [63]. Genetic testing and counseling are beneficial 
for persons at high risk of  familial or inherited CRC, especially 
first-degree relatives, as they can identify susceptibility to in-
heriting this form of  cancer. However, genetic testing should 
focus on intermediate and high-risk patients instead of  popula-
tion-based screening techniques [64]. 

For instance, testing for mismatch repair deficiency is advised 
for screening for Lynch syndrome [65], the most common form 
of  hereditary CRC, which accounts for about 10% of  all CRC 
cases and is associated with mutations in mismatch repair genes 
[66]. Understanding genetic predisposition is crucial for col-
orectal cancer screening and early diagnosis. Advancements in 
this field are key to narrowing the gap between research and 
clinical practice.

Epigenetics as emerging biomarkers in CRC  

In recent years, the intersection of  cancer research and epi-
genetics has begun to attract significant attention. Epigenetics 
refers to heritable modifications in gene expression that do not 
involve alterations to the DNA sequence [67]. Histone mod-
ifications, DNA methylation, remodeling of  the chromatin, 
and non-coding RNA (ncRNA), particularly miRNA, are epi-
genetics alterations that are believed to be essential in CRC de-
velopment and progression [68–70]. Studies have shown that as 
CRC progresses from early-stage adenomas to advanced stages, 
a considerable number of  aberrant methylated genes appear 
to increase drastically, with different frequencies characterizing 
each progression step [71]. This is one of  the many reasons 
epigenetics are now emerging as biomarkers for diagnosis and 
screening and prognostication and response to therapy [72,73]. 
Their presence can be detected in less invasive blood, stool, and 
urine samples, offering a less invasive alternative to traditional 
screening methods like colonoscopy [74]. Furthermore, there 
is a growing consensus that epigenetic changes can occur ear-
ly in carcinogenesis, manifesting more frequently than genetic 
alterations [75].

match repair activity, defined by length changes within simple 
repeated sequences known as microsatellites. This event is re-
ported in 15% of  CRC cases [32,33]. The last pathway of  the 
three is CIMP, a subset of  CRC that can be identified by the 
extensive methylation of  promoter CpG island sites surround-
ing the promoting regions of  several genes [34,35].

The role of genetics in CRC 

CRC predominantly develops through three distinct patterns: 
sporadic, inherited, and familial [36]. The majority of  cases (75–
80%) are sporadic, around 25% are familial with a family history 
of  the disease but no associated germline mutation, and hered-
itary cases comprise approximately 10% [36,37]. Genetic alter-
ations in cancer are characterized by small changes in nucleotide 
sequences or gene-level mutation (point mutation) and significant 
modifications in base pairs structure (deletions, insertions, and 
translocations) [38]. The carcinogenesis process typically involves 
dysregulation of  oncogenes, tumor suppressor genes, and DNA 
repair genes [25]. Multiple pathogenic germline variants have 
been linked to a predisposition to hereditary CRC or polyps [39]. 
There are a number of  hereditary disorders that have a strong 
correlation with the development of  polyps in the colon. These 
conditions include but are not limited to, familial adenomatous 
polyposis (FAP), which is closely related to alteration of  the APC 
gene, MUTYH-associated polyposis (MAP), caused by biallelic 
MUTYH mutations, polymerase proofreading–associated pol-
yposis (PPAP) associated with mutations in the POLE or POLD1 
genes [40,41]. 

Genetic biomarkers for screening and diagnosis of CRC 

The Kirsten rat sarcoma (KRAS) gene is one of  the oncogenes 
most frequently mutated in CRC, with mutations found in ap-
proximately 35-45% of  all CRC cases [42]. This mutation is 
often linked to tumors in the right colon phenotype, and rough-
ly 85% of  all KRAS mutations occur in one of  three primary 
hotspots (codons 12, 13, and 61) [43]. The presence of  KRAS 
mutations has been recognized for its prognostic significance 
and its ability to predict the efficacy of  therapeutic interven-
tions [44]. Patients with KRAS mutation generally have poor-
er prognosis than patients without such mutation [45,46]. 
Inappropriate activation of  the KRAS pathway disrupts the 
upstream signal control of  KRAS, which ultimately causes re-
sistance to receptor tyrosine kinase (RTK) inhibitors [47]. Con-
sequently, testing for KRAS mutations is recommended before 
administering anti-epidermal growth factor receptor (EGFR) 
therapy [44]. Furthermore, KRAS mutations promote liver me-
tastasis by upregulating the expression of  IGF-1R through a 
new mechanism involving MEK-SP1-DNMT1-miR-137 [48]. 
Another gene involved in the RAS/RAF/MEK/ERK signal-
ing pathway is BRAG, which, alongside KRAS, is a component 
of  this signaling [49]. This pathway is necessary for proper cell 
proliferation, differentiation, survival, and apoptosis [50]. Ac-
cording to some reports, BRAF mutations are associated with a 
poor prognosis and occur in approximately 10% of  CRC cas-
es [51]. The unique characteristics of  BRAF mutations suggest 
they may influence the therapeutic response, though further 
research is needed to clarify their specific impact on treatment 
outcomes [52,53]. 

The PIK3CA gene is another frequently mutated gene in 
CRC, accounting for 10–20% of  patients with CRC [54,55]. 
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[95]. Early-tect and Colosafe are SDC2 detection kits developed 
in South Korea and China, respectively [96,97]. Methylated 
SDC2 demonstrates a sensitivity ranging from 77.0% to 93.9% 
and a specificity ranging from 97.4% to 98.1% for all stages of  
CRC screening utilizing stool samples [98–100]. Another gene 
known to have the potential to be a biomarker is the vimentin 
gene (VIM) [101,102]. Normal mesenchymal cells express VIM, 
which codes for the intermediate filament protein involved in cel-
lular structure and stability [103]. Vimentin influences the prolif-
eration, invasion, and migration of  CRC via regulated activator 
protein 1 (AP-1) [104]. Aberrant methylation of  exon-1 regions 
within the non-transcribed VIM can be successfully detected 
in fecal DNA to identify approximately half  of  patients with 
CRC with sensitivity of  46% and specificity of  90% [105]. By 
activating the focal adhesion signaling pathway, FSTL1 interacts 
with VIM and promotes CRC metastasis [106]. Other reported 
methylated genes also include SFRP1 [76,107], SFRP2 [76,107], 
DKK2 [107], NEUROG1 [108], SEPT7, and ALX4 [109]. These 
studies show that DNA methylation might serve as an undeniable 
potential to detect and diagnose CRC in the near future. 

Histone modification shows potential as an indicator 
in CRC detection    

Histone proteins are important chromatin components that wrap 
DNA into nucleosomes and fold it into higher-order structures 
[68]. Histone modifications are most frequently seen in these four 
histones: H2A, H2B, H3, and H4. These histones are arranged 
in cylinder-like structures and comprise the histone core [73]. 
Histone modifications in localized promoter regions, including 
phosphorylation, acetylation, or methylation, are histone codes 
for chromatin packing and transcription [110]. Numerous stud-
ies highlight the significant role of  histone modification in the 
development of  CRC [111], indicating its potential as a biomark-
er for the disease [112–114]. The two histone aberrations most 
frequently studied in CRC are histone acetylation and methyla-
tion [69,115]. 

CRC and adenomas have significantly elevated levels of  H3K9 
methylation compared to normal colonic mucosa, but CRC is 
characterized by increased acetylation levels at H3K27 and 
H4K12 compared to normal colonic mucosa [116–118]. The 
stability of  these modifications in circulation has prompted re-
search into their utility for cancer detection. Patients with CRC 
had significantly lower levels of  H3K9me3 and H4K20me3 in 
circulating nucleosomes, as determined by chromatin immu-
noprecipitation, compared to healthy individuals [119]. Other 
preliminary investigations utilizing ELISA-based assays indi-
cated that H3K27me3 and H4K20me3 levels in patients with 
CRC were considerably lower than in individuals without cancer 
[120]. The histone methyltransferase WHSC1, a histone meth-
yltransferase, facilitates dimethylation of  H3K36me2, which 
is highly expressed in CRC via targeting anti-apoptotic BCL2 
[121]. Although histone modification is less popular than other 
epigenetic modifications, its potential value for diagnostic and 
CRC screening is promising.

The role of miRNA as a novel biomarker in CRC 
diagnosis and screening  

miRNA, a type of  small non-coding RNA (sncRNA), typically 
ranges from 18 to 25 nucleotides in length [122]. By causing the 
breakdown of  mRNAs or preventing translation, miRNAs can 

DNA methylation markers are one of the most 
promising CRC markers 

DNA methylation involves the addition of  a methyl group to 
the C-5 position of  the cytosine ring within DNA facilitated by 
DNA methyltransferases [70], which can modify the activity of  a 
DNA segment without altering its sequence [68]. This epigenetic 
mechanism is implicated in the regulation of  hundreds of  genes 
in CRC, making DNA methylation an intriguing biomarker can-
didate [76]. In addition, methylation of  oncogenes and tumor 
suppressor genes may already be present in the early phases of  
the transformation into a malignant state [77]. 

During the onset of  cancer, hypermethylation in the promoter 
region may result in the inactivation of  tumor-suppressor genes, 
whereas global hypomethylation is linked to genomic instability 
and chromosomal abnormalities [70]. While hypomethylation is 
a gradually early event in tumor progression, hypermethylation 
accumulates in more advanced stages [69,78]. Blood and stool-
based CRC DNA methylation indicators have exhibited sensi-
tivities between 90-95% and specificities between 85-95% [79]. 
The FDA has currently approved two methylation-based diag-
nostic biomarkers for CRC: SEPT9 and the combination of  bone 
morphogenetic protein 3 (BMP3) and N-Myc downstream-regu-
lated gene 4 (NDRG4) [77,80]. SEPT9 has emerged as a helpful 
screening marker in the blood samples of  patients, allowing the 
detection of  CRC at various stages and colonic sites [81]. SEPT9 
methylation is one of  the most popular markers for CRC com-
pared to any other single methylated marker. 

Two commercially available SEPT9 blood tests for CRC 
screening are already in clinical use. These include ColoVantage 
(sensitivity of  90%) [82] and Epi proColon 2.0 (sensitivity of  66–
81% and specificity of  96–9%) [83–85]. Carcinoembryonic An-
tigen (CEA) is one of  the biomarkers used in CRC, and a study 
showed that SEPT9 is better at detecting CRC than CEA. SEPT9 
has a sensitivity of  75.6%, while CEA only has a sensitivity of  
47.7% [80]. Numerous researchers have validated SEPT9 as a 
significant marker for the early detection of  CRC, demonstrating 
its superiority over other markers, such as CEA, when used as 
a single marker [86]. The effectiveness of  SEPT9 methylation 
as a CRC detection marker varies with the stage of  the tumor, 
showing an increased positive rate in correlation with advanc-
ing tumor stages [87]. Combining SEPT9 methylation with CEA 
testing enhances sensitivity, offering a more effective approach for 
early CRC detection [88]. 

The FDA has also approved Cologuard, a commercially avail-
able stool-based test, for CRC detection. This test targets the 
methylation abnormalities of  BMP3 and NDRG4 alongside seven 
site mutations of  KRAS [89,90]. BMP3 is a member of  the trans-
forming growth factor (TGF) superfamily that plays a crucial role 
in embryonic development by initiating and patterning the cre-
ation of  the early skeleton. It is reported that BMP3 regulated 
colon tumorigenesis through an ActRIIB/SMAD2-dependent 
and TAK1/JNK signaling pathway [91]. According to one study, 
BMP3 is hypermethylated in CRC, which is detrimental since it 
inhibits its function [92]. NDRG4 contributes to cell proliferation 
and differentiation, and its expression is reduced in CRC [93]. 

Aside from SEPT9 and the combination of  NDRG4 and BMP3, 
another commercial screening and diagnostic method based on 
the Heparan sulfate proteoglycan syndecan-2 protein (SDC2) was 
developed. SDC2 is a receptor for extracellular matrix elements 
on the cell surface [94]. SDC2 upregulation in CRC is highly 
associated with vascular invasion, cancer stage, and metastasis 
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miRNAs (oncomiRs) [123]. Recent studies have identified several 
anti-oncomiRs, including miR-181b [140], Let7 [141], miR29b 
[142], and miR145 [143]. 

Research on miRNA in the field of  cancer is still in its ear-
ly stages, presenting numerous challenges that need to be ad-
dressed. While it has been proposed that stool-based miRNA 
could be used for CRC screening, there are concerns due to the 
presence of  DNA and RNA from gut microbiota in stool, making 
it uncertain if  this is the optimal screening method [144]. It may 
be possible to improve detection accuracy by using both FIT and 
stool-based miRNA markers to address this issue. According to 
a previous investigation, using miRNA in conjunction with FIT  
improved the efficacy of  fecal-based FIT on its own [145]. Com-
bining miR-21 and miR-92a with other screening strategies, such 
as FIT, increased the specificity to 96.8% and the sensitivity to 
78.4% from 98.4% and 66.7%, respectively [127]. 

Another disadvantage associated with miRNA is the lack of  
organ specificity observed in its expression. This is a common 
issue with many miRNA markers, as their dysregulation often 
overlaps with various cancer types. For example, miR-21 was 
found to have significant expression levels in patients diagnosed 
with lung, breast, esophageal, and gastric malignancies [146]. 
Because a single diagnostic marker would only cover one dis-
ease pathway, using multiple biomarkers could improve miRNA 
sensitivity and specificity, as demonstrated in a study involving 
miRNA-1246, miRNA-202-3p, miRNA-21-3p, miRNA-1229-
3p, and miRNA-532-3p. According to this study, the panel com-
bination had 91.6% sensitivity and 91.7% specificity in differen-
tiating CRC from healthy individuals and 94.4% sensitivity and 
84.7% specificity in distinguishing CRC from adenoma [147]. As 
research advances, a growing body of  knowledge on the role and 
potential of  miRNAs continues to emerge, and it is increasingly 
likely that a biomarker panel suitable for detecting CRC could 
be established.

Expert commentary 

In the past decades, many efforts have been made to decrease 
cancer incidence and improve survival rates. One of  the import-
ant approaches has been the development of  effective, feasible, 
and minimally invasive screening and diagnostic tools. Colonos-
copy, the current golden standard for CRC detection, is invasive 
and requires bowel preparation. CRC diagnosis and screening 

control the translation of  target genes [123]. These extracellular 
miRNAs functioning as signaling molecules facilitating cell-to-
cell communication can be detected in serum and bodily fluids, 
making them potent biomarkers [124]. miRNA can exist stably 
in body fluids like serum or blood plasma, associated with lip-
id-based carriers such as lipoprotein [125,126]. In addition to 
blood samples, miRNA can also be found in feces as colonocytes 
exfoliate and shed into the lumen of  the gastrointestinal tract 
regularly [127,128]. miRNAs have numerous cellular functions 
closely related to cancer development, such as cell proliferation, 
migration, differentiation, and apoptosis [129,130]. Multiple re-
ports have shown significantly different expression of  miRNAs 
between patients with CRC and healthy individuals [68,131,132]. 

Several miRNAs have been identified in CRC tissue samples, 
including miR-21, miR-17, miR-20a, and miR-32 [133]. Re-
ports showed that miR-21, which is upregulated in CRC, is one 
of  the most highlighted oncomiRs in CRC [68,123,134]. miR-
21 has several functions in cell biology, such as cell proliferation, 
adhesion, angiogenesis, migration, invasion, metabolism, and 
anti-apoptosis [132]. Increased levels of  miR-21, miR-29a, and 
miR125b in serum could discriminate patients with early colorec-
tal neoplasms, and the increase in serum miR125b levels might 
represent an early phase of  colorectal carcinogenesis [135]. miR-
NA-21 and miRNA-200b are frequently upregulated in CRC 
cells [68]. Correlations were observed between miR-21 levels 
and matched tissue expression levels, reinforcing its potential as 
a significant indicator [70,134]. Additionally, the levels of  miR-
21 in the serum made a clear distinction between patients with 
adenoma and CRC [136]. According to a study utilizing a panel 
consisting of  miR21, miR25, miR18a, and miR22, only miR21 
concentrations exhibited a significant increase three years be-
fore diagnosis, suggesting its diagnostic utility [137]. In addition, 
miRNA markers may serve as important tools in prognostication. 
A study demonstrated that elevated levels of  the microRNA miR-
141 in plasma were associated with poor prognosis [138]. An-
other study yielded different results depending on whether free 
circulating or exosomal miRNA was measured. There was no 
discernible difference in the levels of  miRNA found in the serum. 
However, exosomal levels of  miR-16, miR-23, and let-7 were 
different between patients with CRC and controls [139]. It was 
reported that the loss of  tumor-suppressing miRNAs, also known 
as anti-oncomiRs, during reduced global miRNA had a greater 
impact on promoting carcinogenesis than the loss of  oncogenic 

Table 1. List of genetic and epigenetic biomarkers candidates for screening and early detection of CRC

Categories Gene Sample Evidence** Commentary

Genetic

BRAF [148–150] Tissue, blood High ∙	 Strongly associated with gene co-methylation
∙	 Usually used for distinguishing familial MSI-

High CRC from sporadic CRC
∙	 Reported as therapeutical predictive markers 

(unresponsive to anti-EGFR)
∙	 In serum sample shows variable results

KRAS [148,151], NRAS [152], APC 
[153], MMR genes (MLH1, MSH2, 
MSH6, PMS2, EPCAM) [154]

Tissue High ∙	 Reported as therapeutical predictive markers 
(unresponsive to anti-EGFR)

∙	 Associated with prognostic status

PTEN [155], STK11 [156], CSMD1 
[157], PIK3CA [156]

Tissue Low ∙	 Studies showed variable results
∙	 Low occurrence of CRC
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Categories Gene Sample Evidence** Commentary

Epigenetic

Single DNA 
methylation marker

SEPT9 [85,158,159] Stool, blood High ∙	 The most studied epigenetic marker with a 
large number of samples and studies. 

∙	 FDA-approved and has been used in clinical 
settings

Vimentin [103,148], SDC2 [160–162] Stool, blood Moderate ∙	 The value of this gene differs depending on 
the samples

∙	 A moderate number of studies and samples
∙	 A low number of studies with paired samples
∙	 Stool Vimentin could detect adenoma while 

there is no data regarding blood sample  

EYA2 [148], GATA4 [103], IGFBP3 
[163], NDRG4 [103], NEUROG1 [108], 
SFRP2 [103], TFPI2 [164], WIF1 [165], 
ALX4 [148]*

Stool, blood Low ∙	 Small number sample size
∙	 Small number of studies

Panel DNA 
methylation markers

NDRG4, BMP3, KRAS mutation 
(genetic), hemoglobin [166–169]

Stool, blood High ∙	 A large number of studies and sample size
∙	 High sensitivity and specificity
∙	 Used in clinical settings
∙	 FDA approved

ALX4, BMP3, NPTX2, RARB, SDC2, 
SEPT9, and VIM [170], SFRP2, 
GATA4/5, NDRG4 and  VIM [103], 
ITGA4, SFRP2, and p16 [171], SEPT9 
and ALX4 [109], SFRP1, HPP1, TFP12, 
and IKZF1 [172], IRF4, IKZF1 and 
BCAT1 [173], IGFBP3 and miR137 
[163], IGFBP3 and TWIST1[163], 
SEPT9 and ALX4 [109], SFRP2, TFPI2, 
NDRG4, and BMP3 [174], ALX4, 
SEPT9, and TMEFF2 [175], APC, 
MGMT, RASSF2A, and WIF1 [176], 
BCAT1 and  IKZF1 [177], TFPI2 and 
SDC2 [178]

Stool, blood Low ∙	 A small number of studies
∙	 Varied results

Histone 
modifications

H3K9me3 [118,179],  H4K20me3 
[179]

Tissue Low ∙	 A small number of samples
∙	 A small number of studies
∙	 A primary tissue sample is not convenient 

compared to blood or stool samples

Single miRNA 
marker

miR-21 [180-183]*, miR-92a [182]*, 
miR-29a [183]*, miR20a, miR106a 
[182],miR223, miR-143/miR145 
[182]*,miR221, miR135b [183]*, miR31 
[182]

Stool, blood Low ∙	 Varied results
∙	 Low to moderate sensitivity
∙	 Can be upregulated in other malignancies

Panel miRNA 
markers

miR-21, miR-29a, and miR-125b 
[183], miR-21, let-7g, miR-31, miR- 
92a, miR-181b, and miR-203 [184], 
miR-601, miR-760*[185], miR-29a 
and 92a*[186], miR-532-3p, miR-331, 
miR- 195, miR-17, miR-142-3p, miR-
15b, miR-532, and miR- 652 *[187], 
miR-19a-3p, miR-223-3p, miR-92a-3p 
and miR-422a [188]*

Blood Low ∙	 Varied results
∙	 A small number of studies
∙	 Low to moderate sensitivity
∙	 Can be upregulated in other malignancies

miR-223 and miR-92a [189], miR-21 
and miR-92a*[190]

Stool, blood Low ∙	 A small number of studies
∙	 Low to moderate sensitivity
∙	 Can be upregulated in other malignancies

*Including for detecting adenoma
** Evidence is based on number of studies, number of sample used in studies, and whether the biomarkers have been used in clinical settings

Table 1. Continued. List of genetic and epigenetic biomarkers candidates for screening and early detection of CRC
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